3D City Database for CityGML

Release 4.1

Documentation

Jan 15, 2020

Contents

1 First steps 3
[.1 0 System reqUirements v v v v v v v e 3
1.1.1 3D City Database e e 3

1.1.2 Importer/Exporter Tool e 4

1.2 Installation of the Importer/Exporter e 4
1.3 Setting up the database schema L e 7
L.3.1 0 Shell Scripts v v o o e e e e e e e e e e e e e e e e e e 7

1.3.2 SQL Scripts o o e e e e e e e e e e e e e 9

1.3.3 Installation steps on Oracle Databases 9

1.3.4 Installation steps on PostgreSQL L o 12

1.4 Migration from previous releases e e e 13
1.4.1 V2toV4Migrationon Oracle it 14

1.42 V2to V4 Migration on PostgreSQL Lo 16

143 V3toVAMigration oL 16

1.4.4 Upgrade between minorreleases e 16

1.5 3DCityDB Docker Imageso i e e e 17
1.5.1 Getting started e e e e e e e e e e e e e 17

1.5.2 Further images v v i i i it e e e e e e e e e e e e e e 17

2 3D City Database 19
2.1 Introduction e 19
2.2 Main features of 3DCityDB e e 20
22.1 CityGML 2.0.0 and 1.0.0 compliant database 21

2.2.2 Support for CityGML Application Domain Extensions (ADEs) 21

2.2.3 Importing and exporting CityGML data 21

224 Exportto KML, COLLADA and gITF 22

2.2.5 Spreadsheet eXport L e e e e e e e e e 22

2.2.6 Interactive 3D web visualization oL oo 22

2.2.77 Web Feature Service (WES)2.0 oo 22

2.2.8 DOCKer Support e e e e e e e 23

2.2.9 Open Source and Platform Independence 23
2.2.10 Features inherited from CityGML e 23

2.3 System and design deciSiOns oL e e e e e e e e e e e e e 25
24 Developmenthistory e 25
241 Version 1 -2003-2007 oo e 25

242 Version2-2006-2014 26

2.5

2.6

2.7

2.8
29

243 Version3-2013-2018 26

244 Version4-since 2015 L L e 26
245 Acknowledgements L e e e e e e e e 27
2.4.6 List of changes between software versions 27
2.4.6.1 Notable changes between4.0and3.3 27
Data Modelling and Database Design 29
2.5.1 Simplification compared to CityGML 2.0.0 29
2.5.1.1 Multiplicities of attributes L 29
2.5.1.2 Cardinalities and types of relationships 29
2.5.1.3 Simplified treatment of recursions oL 29
2.5.14 Datatypeadaptation oLl e e e e e 30
2.5.1.5 Project specific classes and class attributes L 30
2.5.1.6 Simplified design of GML geometry classes 30
UML class diagram 0 o et e e e e e e e e e e e e e e 30
2.6.1 Geometric-topological Model Lo 30
2.6.2 Implicit GEOMELIY o o i e e e e e e e e e e e 31
2.6.3 Appearance Model 33
2.64 Thematicmodel 35
2.64.1 CoreModel 35
2.64.2 Buildingmodel 37
2643 BridgeModel 38
2.64.4 CityFurniture Model L 41
2.6.4.5 Generic Objects and Attributes e 42
2.64.6 LandUseModel 44
2.6.4.7 Digital TerrainModel 46
2.6.4.8 Transportation Model 47
2.6.4.9 Tunnel Model 49
2.6.4.10 Vegetation Model L 52
2.6.4.11 WaterBodies Model 52
Relational database schema oL 55
2.7.1 Mapping rules, schema conventions oL 55
2.7.1.1 Mapping of classesontotables L. 55
2.7.1.2 Explicit declaration of class affiliation 56
2.7.2 Conceptual database StruCture v v v it e e e e e e e e e e e e 64
2773 Databaseschema e 65
2773.1 MetadataModel 65
27732 CoreModel e 67
2.7.3.3 Tables for geometry representation 69
2.7.34 Appearance Model e e e 77
2.7.3.5 Building Model e e 80
27.3.6 BridgeModel 90
2737 CityFurniture Model Lo oo 92
2.7.3.8 Generic Objects and Attributes o o o 94
2739 LandUseModel 97
2.7.3.10 Digital Terrain Model e 98
2.7.3.11 Transportation Model e 99
2.7.3.12 Tunnel Model e e e 100
2.7.3.13 Vegetation Model 103
2.7.3.14 WaterBody Model 103
2.7.3.15 Sequences e e e e e e e e e e 105
Definition of the CRS for a 3D City Database instance 107
Working with multiple database schemas oL oL, 107
2.9.1 Create and address database schemas o oL 107
292 Readand writeaccesstoaschema L Lo 108

2.9.3 Schema support in stored procedures e e e e 108

2.10 Stored procedures and additional features L L e 109
2.10.1 User-defined datatypes o i it e e e e 109
2.10.2 CITYDB_UTIL e e e e e e e e e e e e 110
2.10.3 CITYDB_CONSTRAINT e e e e s 113
2.10.4 CITYDB_IDX e 115
2.10.5 CITYDB_SRS e 117
2.10.6 CITYDB_STAT e e e e e e e e e e e 119
2.10.7 CITYDB_OBICLASS e e e e e 119
2.10.8 CITYDB_DELETE et e e e e 120
2.10.9 CITYDB_ENVELOPE st e e e s 124

3 Importer-Exporter 127

3.1 Interfaces L e 127

3.2 Database connections and Operations L L Lo e e e e 129
3.2.1 Managing and establishing database connections 129
3.2.2 Executing database Operations e e e e e e e e e e 132

3.2.2.1 Generating adatabase reportl 132
3.2.2.2 Calculating/updating the boundingbox 132
3223 Managing indexeso e e e e e e e 133
3.2.2.4 Managing the spatial reference system of the database 135
3.2.2.5 Displaying supported CityGML ADEs 136

33 Importing CityGML files e 137

34 Exportingto CityGML e 143
341 SQLQUEIES v vt e e e e e e e 149
342 XML query eXpressions ouoa e 150

3.4.2.1 <typeNames> parameter v v v v v e v e e e e e e e e e e e e e e e 150
3.4.2.2 <propertyNames> projectionclause oo 153
3423 <filter>selectionclauseo e e 154
3424 <count>parametero e e e e 161
3425 <lods>parametero e e e e e e e e 162
3.4.2.6 <appearance> Parameter v . v v e e e e e e e e e e e e e e e e e e e 163
3427 <tiling>parameter e e e e e e e e e e e e e e e e e 163
34.2.8 targetSrid attribute oL 164
3429 Addressinformation Lo e e e e 164
34.2.10 3DCityDBmetadatal e 166
3.4.2.11 Using XML queries in batch processes v v v v v v v 167

3.5 Exporting to KML/COLLADA/gITE e e e e e e e e 168
3.5.1 Support of GenericCityObject having any geometry types 175
3.5.2 Loading exported models in Google Earth and Cesium Virtual Globe 176

3.6 Preferences e 180
3.6.1 CityGML import preferences o vttt e e e e 180

3.6.1.1 Continuation e e e e e e e e 180
3.6.1.2 gmlidhandling L 183
3.6.1.3 Address e 184
3.6.1.4 Appearance e e e e 185
3.6.1.5 GeOmEIry i e e e e e e e 188
3.,6.1.6 Indexes e e 189
3.6.1.7 XML validation e e 191
3.6.1.8 XSL Transformation e 192
3.6.1.9 Importlog e 192
3.6.1.10 Resources e e e e e e 196
3.6.2 CityGML export preferences v v v i e e e e e e e e e e 198
3.6.2.1 CityGML Version v v i v e i e e e e e e e e e e e e e 198

3.6.2.2 TN OPtiONS . . . v v v i e e e e e e e e e e e e e e e e e e 198

3.6.2.3 CityObjectGroup v v v v it e e e e e e e e e 199

3.6.24 Address e 200

3.6.2.5 Appearance it e e e e e 202

3.6.2.6 XLinks e e 203

3.6.2.7 XSL Transformation oo v vt i it e e 205

3.6.2.8 RESOUICES i v it e e e 206

3.6.3 KML/COLLADA/gITF export preferences v .. 206
3.6.3.1 General Preferences 207

3.6.3.2 Rendering Preferences Lo 210

3.6.3.3 Information Balloon Preferences 218

3.6.3.4 Altitude/Terrain Preferences L oo 225

3.6.3.5 General setting recommendations oL e e e 230

3.6.4 Management of user-defined coordinate reference systems 233

3.6.5 General preferences L e 236
3.6.5.1 Cache e 236

3.6.5.2 TImportandexportpath e 236

3.6.5.3 Network proXies o v v i i e e e e e e e e e e e e 236

3.6.54 APIKeys. e 240

3.6.5.5 Logging e e 240

3.6.5.6 Languageselection 242

3.7 Map window for bounding box selections Lo 244
3.8 Using the command line interface (CLI) i .. 246
3.9 Importer/Exporter plugins oL .o e e e e e e e e e e e e e 251
3.9.1 Introduction to the plugin architecture 251

3.9.2 Spreadsheet Generator Plugin (SPSHG) 251
3.9.2.1 Definition oL e e e e e 251

3.9.2.2 Plugininstallation e e e e e e e e 252

39.23 UserInterface 254

3024 0Output e e 261

393 ADEManagerPlugin e 268
3.9.3.1 Definitiono e e e e 268

3.9.3.2 Plugininstallationo e 268

39.33 Userlnterface e 269

3.9.3.4 Workflow of extending the Import/Export Tool 277

4 Web Feature Service 285
4.1 System require€mentS v v v v v e 285
4.2 Installation e e e e 286
4.3 Configuring the Web Feature Service L o 288
4.3.1 Database settingso e e e e e e 288

4.3.2 Capabilities Settings o o i e e e e e e e e e 291

4.3.3 Feature type SEttings v v v vt e 291

4.3.4 Operations SEttings« v v o i i e e e e e e e e e e e e e e e e e e 293

4.3.5 Postprocessing Settings o e e e e e e 293

4.3.6 Serversettings e 294

437 Cachesettings v i e e e e e e e e e 295

4.3.8 Constraints SEtNGS . . .« v v v v v e 295

439 Log@Ing SettiNgS . . . v v v v v e 296

4.4 Functionality e e e e e e e e e e e e 297
44.1 Basicfunctionality L e 297
4411 WESOperations v vttt e e e e e e 297

4412 Service URL L . e 299

4.4.1.3 Servicebindings e e e e e e e e 299

4414 CityGML feature types« v v v v v v e e e e e e e e e e e
4.4.1.5 EXCEPHONTEPOILS . . v v v v v v e e e e e e e e e e e e e e e e e e e
442 GetCapabilities Operationt v it e e e e e e e e e e e e
443 DescribeFeatureType operation o
4.4.4 ListStoredQueries Operationo i e e e e
4.4.5 DescribeStoredQuery operationol e e e e
4.4.6 GetFeature operation it i e e e e e e e e e e e e e
4.5 Web-based WEFSclient
3DCityDB-Web-Map-Client
5.1 System reqUIrements v v vt e
5.1.1 Using the 3D Web Client from the 3DCityDB homepage
5.2 Installation and configuration L oL e
53 Feature OVEIVIEW it it it e e e e e e e e e e
5.4 Handling KML/gITF models with online spreadsheet
5.5 Handling Web Map Servicedata e e e
5.6 Handling Digital Terrain Models e e e
5.7 Interaction with 3D objects L e
5.8 Mobile Support Extension e e e e e e e
5.8.1 A more lightweight graphical user interface
5.8.2 Geolocation-based features
Appendix
6.1 Contributors e e e e
6.1.1 Active participants indevelopment e
6.1.2 Participants in earlier developments Lo L
6.2 3DCityDB @ TUMiinchen it
6.2.1 Interactive Cloud-based 3D Webclient
6.2.2 Research Projects in which 3DCityDB is beingused
6.2.3 Current and future work on 3DCityDB o
6.3 3DCityDB @ virtualcitySYSTEMS e
6.3.1 virtualcityDATABASE o e
6.3.2 virtualcitySUITE — The 3D City Platform
6.4 3DCityDB @ M.O.S.S. e
6.4.1 novaFACTORY ataglance ittt i ettt
6.4.2 novaFACTORY 3D GDI e e
References
Changelog
8.1 3D City Database relational schema o
8.1.1 Generalchanges e
8.2 3D City Database SCrIPLS ¢« v v v vt e e e e e e e e e e e e e e e e
8.3 3D City Database stored procedures 0 i e e e e e e e e
8.3.1 Generalchanges e e e e e e e
832 UTILpackage o e e e
833 IDXpackage
834 SRSpackage e
8.3.5 STAT package« o o v it e e e e e e e e e e e e
8.3.6 DELETEpackage o e e e e e e e
83.7 DELETE_BY_LINEAGE package
8.3.8 ENVELOPE package ittt e e e e
8.4 3D City Database Importer/EXporterottt
8.4.1 Generalchanges i e e e e e e e
8.4.2 CityGML ImMpPOrt o e e e e e e e e e e e e e

365

367
367
367
367
368
368
368
368
369
369
369
369
369
369
369
370

843 CityGML eXPOIt v v ittt e e e e e e e e e e

8.4.4 KML/COLLADA/ZITE €Xport o v o v e e e e e e e e e e e e e e 371

8.5 Web Feature Service L e e e e 371
86 3D WebMap Client e e 371
Bibliography 373

vi

3D City Database for CityGML, Release 4.1

Contents:

Contents 1

3D City Database for CityGML, Release 4.1

2 Contents

CHAPTER 1

First steps

The 3D City Database comes with SQL scripts for setting up an instance of the relational schema on a spatial database
system (Oracle Spatial/Locator or PostgreSQL/PostGIS) and with a database loading and extracting tool called Im-
porter/Exporter. Installers are available for download at http://www.3dcitydb.org. The source code of the 3D City
Database project is hosted on https://github.com/3dcitydb. Please follow the instructions on the next pages to com-
plete a proper installation.

1.1 System requirements

1.1.1 3D City Database

Setting up an instance of the 3D City Database requires a running installation of an Oracle or PostgreSQL database
server.

Oracle

Supported version are Oracle 10g R2 or higher. The 3D City Database requires spatial data support provided either
through the Oracle Spatial or Locator extension. It is highly recommended to install available patches to avoid un-
expected errors and to benefit from the latest functionality. For Oracle 10g R2, at least patch set 10.2.0.4.0 is
required for using the KML/COLLADA/gITF export capabilities.

PostgreSQL

Supported versions are PostgreSQL 9.3 or higher with the PostGIS extension 2.0 or higher. Please also make sure
to always install the latest patches and updates.

The SQL scripts to create the database schema are written to be executed by the default command-line-based client
interface of the DBMS — which is SQL*Plus for Oracle and psql for PostgreSQL. The scripts include meta commands
specific to these clients and would not work properly when using a different client software. So please make sure
SQL*Plus or psql is installed on the machine from where you want to setup the 3D City Database.

http://www.3dcitydb.org
https://github.com/3dcitydb

3D City Database for CityGML, Release 4.1

1.1.2 Importer/Exporter Tool

The Importer/Exporter tool can run on any platform providing support for Java 8 (or higher). It has been successfully
tested on (but is not limited to) the following operating systems:

¢ Microsoft Windows XP, Vista, 7, 8, 10;
* Apple Mac OS X and macOS;
e Ubuntu Linux 9 to 18.

Prior to the setup of the Importer/Exporter tool, the Java 8 Runtime Environment (or higher) must be installed on
your system. The installation package can be obtained from http://www.java.com/en/download. Follow the installa-
tion instructions for your operating system.

The Importer/Exporter is shipped with a universal installer that will guide you through the steps of the setup process.
A full installation of the Importer/Exporter including documentation and example CityGML files requires approx. 505
MB of hard disk space. Installing only the mandatory application files will use approx. 350 MB of hard disk space.
Installation packages can be selected during the setup process.

The Importer/Exporter runs with 1 GB of main memory per default. This setting should be reasonable on most
platforms and for most import/export procedures. If required, you can manually adapt the main memory limits in the
starter script of the program. Please refer to Section 3.1 for more details.

1.2 Installation of the Importer/Exporter

Download the universal installer from the 3DCityDB website at http://www.3dcitydb.org or from the GitHub release
section and save it to your local file system. The installer is shipped as an executable Java Archive (JAR) file. To run
the installation wizard, simply double-click on the 3DCityDB-Importer-Exporter-4.x.x-Setup.jar file. After accepting
the license agreement and specifying an installation directory, you can choose the software packages to be installed.

It is recommended to at least select the packages ‘3D City Database’ and ‘Documentation’. The ‘3D City Database’
package contains all Shell&SQL scripts that are required for setting up an instance of the 3D City Database on your
spatial database system. Please refer to Section 1.3 for a step-by-step guide on how to use the scripts. The package
‘Sample CityGML and KML/COLLADA datasets’ contains license-free sample data that may be used in first tests.

The option ‘Plugins’ allows a user to install plugins for the Importer/Exporter, which add further functionality to the
tool. This release is shipped with the Spreadsheet Generator Plugin and the ADE Manager Plugin. More plugins may
be added in future releases.

The 3D Web Map Client is a web-based viewer for 3DCityDB content and provides high-performance 3D visualization
and interactive exploration of arbitrarily large semantic 3D city models on top of the open source Cesium Virtual Globe.

After successful installation, the contents of all selected installation packages are available in the installation directory.
To run the Importer/Exporter (as GUI or CLI), simply use the starter script in the bin subfolder.

Note: Before the Importer/Exporter can connect to an Oracle/PostgreSQL database, the 3D City Database schema
must have been set up. Please, follow the instructions provided in the next chapter.

The installation directory contains the following subfolders:

4 Chapter 1. First steps

http://www.java.com/en/download
http://www.3dcitydb.org
https://github.com/3dcitydb/importer-exporter/releases
https://github.com/3dcitydb/importer-exporter/releases
https://cesiumjs.org/

3D City Database for CityGML, Release 4.1

¥ Installation - 30 City Database Importer/Exporter v4,1.0 — O >

Installationspakete wihlen
Wahlen Sie die zu installierenden Programmfunktionen aus.

Schritt 5 von 9

Bitte wahlen Sie hier die Installationspakete aus:
Q Hinweis: Die grau markierten Pakete kinnen nicht optional ausgewahlt werden.

e Anwendunagsdaten 351,16 MB
3D City Database 2,14 MB
Dokumentation 21,53 MB
3D Web Map Client 29,52 MB
CityGML und KML/COLLADA Beispieldaten 57,95 MB
=) [+7] Plugins 20,32 MB
Spreadsheet Generator Plugin 13,52 MB
:... [7] ADE Manager Plugin 6,8 MB
Beschreibung
Erforderlicher Speicherplatz: 432,61 MB
Verfiigharer Speicherplatz: 278,82 GB

(Erstellt mit |zPack - http:/Vizpack.ong/)

-@ Zuriick @ Beenden

Fig. 1.1: Installation wizard of Import/Export tool (Step 5).

1.2. Installation of the Importer/Exporter 5

3D City Database for CityGML, Release 4.1

Table 1.1: Contents of the installation directory

Folder

Optional

Explanation

3dcitydb

Contains all SQL scripts and stored
procedures for operating

the 3DCityDB

3d-web-map-client

Contains a ZIP archive containing
all files required to install the

3D Web Map Client on a web
server

ade-extensions

Contains extension packages to
support CityGML ADEs. ADE

extensions only must be copied to
this directory to make them

available in the program

bin

Platform-specific starter scripts to
launch the Importer/Exporter.

For instance, under Windows,
double-click on
3DCityDB-Importer-
Exporter.bat to run the

program

contribs

Third-party tools required by the
Importer/Exporter

(e.g. collada2gltf converter
binaries)

lib

Contains all libraries required by
the Importer/Exporter

licence

Contains the license documents for
Importer/Exporter

manual

Contains the documentation for the
3DCityDB and the tools

6
(54

plugins

Contains plugins of the
Importer/Exporter. Plugins only

3D City Database for CityGML, Release 4.1

1.3 Setting up the database schema

The required scripts for setting up the 3D City Database are in the installation directory of the Importer/Exporter
within the 3dcitydb/oracle/ or 3dcitydb/postgresql/ subfolders.

1.3.1 Shell Scripts

In previous versions of the 3D City Database the setup was managed through user prompts in SQL scripts. To
facilitate continuous integration workflows these inputs have been moved to batch (Windows) and shell scripts
(UNIX/Linux/macOS). The following table provides an overview of the different shell scripts:

1.3. Setting up the database schema 7

3D City Database for CityGML, Release 4.1

Table 1.2: Overview of all shell scripts within the 3dcitydb/oracle or

3dcitydb/postgresql folder

File

Oracle

PgSQL

Explanation

CONNECTION_DETAILS

Sets database credentials

CREATE_DB

Runs all scripts for
creating the

relational schema of a
3DCityDB incl.
database types and
functions

CREATE_SCHEMA

Creates an additional
3DCityDB

instance in a separate
schema within the
same database

DROP_DB

Deletes all elements of
the 3DCityDB

DROP_SCHEMA

Removes a given database
schema that

contains a 3DCityDB
instance

MIGRATION/GRANT_AC

X
CESS_V2

Grants access on a
3DCityDB v2 to a

v4 user (only relevant for
migration)

MIGRATION/MIGRATE_1

Migrate an instance of the
3DCityDB
from v2 or v3 to v4

MIGRATION/UPGRADE |

X
DB

Upgrade an instance of
the 3DCityDB
to the latest v4

Chapter 1. First steps

GRANT_ACCESS

Grants read-only of

reaad_write accreace

3D City Database for CityGML, Release 4.1

The batch/shell scripts can be executed on double click. On some UNIX/Linux distributions though, you will have
to run the .sh scripts from within a shell environment. Please open your favorite shell and check whether execution
permission is set for the starter script. Change to the installation folder and enter the following to make the starter
script executable for the owner of the file, e.g.:

’ chmod u+x CREATE_DB.sh

Afterwards, simply run the shell script by typing:

’ ./CREATE_DB. sh

Note: The database connection details need to be set in the CONNECTION_DETAILS script prior to executing
the batch/shell scripts.

1.3.2 SQL Scripts

The SQLScripts directory contains four subfolders:
SCHEMA

Includes SQL files about the logical (tables, constraints) and physical (datatypes, indexes) database schema of the
3D City Database exported from the schema modelling tools JDeveloper (Oracle) or pgModeler (PostgreSQL) (with
minor changes). INSERT statements for the prefilled lookup tables OBJECTCLASS and AGGREGATION_INFO as
well as converter functions between table names and objectclass IDs can be found in the OBJECTCLASS subfolder.
Because of PostgreSQL’s way to handle database schemas the SCHEMA folder contains a few more scripts with stored
procedures. See chapter Working with multiple database schemas for more details.

CITYDB_PKG

Contains scripts that create database objects and stored procedures mainly to be used by the Importer/Exporter appli-
cation. They are written in PL/SQL (Oracle) or PL/pgSQL (PostgreSQL) and grouped by the type of operation (data
manipulation, maintenance etc.). The APIs are introduced in Stored Procedures chapter.

UTIL
This folder assembles different database management utilities:
* Grant and revoke read rights to and from the 3D City Database. (cf. Section 2.9.2)
 Create additional database schemas with a 3D City Database layout (PostgreSQL-only) (cf. Section 2.9.1)
* Enable or disable versioning (execution can be time-consuming) (Oracle-only)
» Update table statistics for spatial columns (PostgreSQL-only)
MIGRATION

Provides a migration path from previous releases to the newest version. See Migration chapter for more details. This
folder will also include upgrade scripts for upcoming minor releases.

1.3.3 Installation steps on Oracle Databases

Step 1 - Define a user for the 3D City Database

A dedicated database user should be created for your work with the 3D City Database. This user must have the roles
CONNECT and RESOURCE assigned and must own the privileges CREATE SEQUENCE and CREATE TABLE.

1.3. Setting up the database schema 9

https://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
https://pgmodeler.io/

3D City Database for CityGML, Release 4.1

Note: The privileges CREATE SEQUENCE and CREATE TABLE are required for enabling and disabling spatial
indexes. It is not sufficient to inherit these privileges through a role.

Step 2 — Edit the CONNECTION_DETAILSI.sh | .bat] script

Go to the 3dcitydb/oracle/ShellScrpts directory, choose the folder corresponding to your operating system and open
the file named CONNECTION_DETAILS within a text editor. There are five variables that will be used to connect
to the DBMS. If SQL*Plus is already registered in your system path, you do not have to set the directory for the
SQLPLUSBIN variable. The other parameters should be obvious to Oracle users. Here is an example how the complete
CONNECTION_DETAILS can look like:

SQLPLUSBIN= C:\\Oracle\\instantclient_11_2
HOST=localhost

PORT=1521

SID=orcl

USERNAME=citydb_v4

Note: The scripts to grant or revoke read access require SYSDBA privileges. You can specify a SYSDBA user in the
CONNECTION_DETAILS script under an additional parameter called SYSDBA_USERNAME.

Step 3 - Execute the CREATE_DB script:

As soon as the database credentials are defined run the CREATE_DB script — located in the same folder as CONNEC-
TION_DETAILS (see also Section 1.3.1).

Step 4 - Define the coordinate reference system

When executing the CREATE_DB script, the user is prompted for the coordinate reference system (CRS) to be used
in the 3D City Database. You have to enter the Oracle-specific SRID (spatial reference ID) of the CRS which — in
most cases — resembles the EPSG code of the CRS. There are three prompts in total to define the spatial reference:

* First, specify the SRID to be used for the geometry columns of the database. Unlike previous version of the 3D
City Database there is no default CRS defined.

* Second, specify the SRID of the height system if no true 3D CRS is used for the data. This can be regarded as
metadata and has no effect on the geometry columns in the database. The default value is 0 — which means “not
set”.

e Third, provide the GML-conformant uniform resource name (URN) encoding of the CRS. The default
value uses the OGC namespace and comprises of the first two user inputs: urn:ogc:def:crs,
crs:EPSG: :<crsl>[,crs:EPSG::<crs2>].

More information about the SRID and the URN encoding can be found in Section 2.8.
Step 5 — Enable or disable versioning

After providing the CRS information, the user is asked whether or not the database should be versioned-enabled.
Versioning is realized based on Oracle’s Workspace Manager functionality (see the Oracle documentation for more
information). Please enter ‘yes’ or ‘no’. The default value ‘no’ is confirmed by simply pressing Enter. Note that,
in general, insert, update, delete and index operations on version-enabled tables take considerably more time than on
tables without versioning support.

Step 6 — Choose Spatial or Locator license option

You can set up a 3D City Database instance on an Oracle database with Spatial or Locator support. Since Locator
differs from Spatial with respect to the available spatial data types, you need to specify which license option is valid
for your Oracle installation. Simply enter ‘L’ for Locator or ‘S’ for Spatial (default value) to make your choice.

10 Chapter 1. First steps

3D City Database for CityGML, Release 4.1

Note: Since Locator lacks the GeoRaster data type, the 3D City Database tables for storing raster reliefs
(RASTER_RELIEF, GRID_COVERAGE, GRID_COVERAGE_RDT) are not created when choosing Locator.

Note: Several spatial operations and functionalities that are available in Oracle Spatial are not covered by the Locator
license even though they might be available from your Oracle installation. It is the responsibility of the database
user to observe the Oracle license option. Choosing Locator or Spatial when setting up the 3D City Database does
neither affect the license option nor the users’ responsibility.

The following figure exemplifies the required user input during steps 4 to 6.

N C\Windows\system32\cmd.exe | = | =] %

o/ N 1IN I,
I__/

3D City Database - The Open Source CityGML Database

HESEE R HE AR H AR B A H R H BH B R BB R B R R B R R HHH R HHEH AR RES
HEHERE

Welcome to the 3DCityDB Setup Script. This script will guide you through the pro
cess
of setting up a 3DCityDB instance. Please follow the instructions of the script.

Enter the required parameters when prompted and press ENTER to confirm.
Just press ENTER to use the default values.

Documentation and help:
3DCityDB website: https://wwu.3dcitydb.org
3DCityDB on GitHub: https://github.com/3dcitydb

Having problems or need support?
Please file an issue here:
https://github.com/3dcitydb/3deitydb/issues

HEH R BB HERRE R R R BB HH B R R HB R R B R HER R R R HR R R ERRHH R R HH R HE
HE#HEH

Please enter a valid SRID (e.g., EPSG code of the CRS to be used).
(SRID must be an integer greater than zero): 25833

Please enter the EPSG code of the height system (use 8 if unknown or '25833" is
already 3D).
(default HEIGHT_EPSG=0): 5783

Please enter the corresponding gml:srsName to be used in GML exports.
(default GMLSRSNAME=urn:ogc:def:crs,crs:EPSG: :25833,crs:EPSG::5783):

Shall versioning be enabled (yes/no)?
(default UERSIONING=no):

Which database license are you using (Spatial=S/Locator=L)?
(default DBUERSION=5): L

Fig. 1.2: Example user input when executing CREATE_DB on an Oracle database.

1.3. Setting up the database schema 11

3D City Database for CityGML, Release 4.1

Step 7 — Check if the setup is correct

After successful completion of the setup procedure, the tables, sequences and packages (that contain stored procedures)
should appear in the user schema.

Versioning of the database can also be switched on and off at any time. The corresponding scripts are EN-
ABLE_VERSIONING.sql and DISABLE_VERSIONING:.sql. These scripts invoke routines of the Oracle Workspace
Manager and will take some time for execution depending on the amount of data stored in the 3D City Database
instance.

Last but not least, the schema and stored procedures of the 3D City Database can be dropped with the DROP_DB
script, which is executed like CREATE_DB. Similar to CREATE_DB, you need to provide the license option (Locator
or Spatial). Note that the script will delete all data stored in the 3D City Database schema. The database user will,
however, not be deleted.

1.3.4 Installation steps on PostgreSQL

Step 1 - Create an empty PostgreSQL database

Choose a superuser or a user with the CREATEDB privilege to create a new database on the PostgreSQL server (e.g.
‘citydb_v4’). As owner of this new database, choose or create a user who will later set up the 3D City Database
instance. Otherwise, more permissions have to be granted. In the following steps, this user is called ‘citydb_user’.

Connect to the database and type:

CREATE DATABASE citydb_v4 OWNER citydb_user;

or use a graphical database client such as pgAdmin that is shipped with PostgreSQL. Please check the pgAdmin
documentation for more details.

Step 2 — Add the PostGIS extension

The 3D City Database requires the PostGIS extension to be added to the database. This can only be done as superuser.
The extension is added with the following command (or, alternatively, using pgAdmin):

’CREATE EXTENSION postgis;

Some 3D operations such as extrusion or volume calculation are only available through the PostGIS SFCGAL exten-
sion. The installed PostGIS add-on should at least be on version 2.2 to execute the DDL command:

’CREATE EXTENSION postgis_sfcgal;

Step 3 — Edit the CONNECTION_DETAILS[.sh | .bat] script

Go to the 3dcitydb/postgresql/ShellScrpts directory, choose the folder corresponding to your operating system and
open the file named CONNECTION_DETAILS within a text editor. There are five variables that will be used to
connect to the DBMS. If psql is already registered in your system path, you do not have to set the directory for the
PGBIN variable. The other parameters should be obvious to PostgreSQL users. Here is an example how the complete
CONNECTION_DETAILS can look like:

PGBIN= C:\PostgreSQL\9.6\bin
PGHOST=localhost

PGPORT=5432

CITYDB=citydb_v4
PGUSER=citydb_user

Step 4 - Execute the CREATE_DB script

12 Chapter 1. First steps

3D City Database for CityGML, Release 4.1

As soon as the database credentials are defined run the CREATE_DB script — located in the same folder as CONNEC-
TION_DETAILS (see also Section 1.3.1).

Step 5 — Specify the coordinate reference system

Like with the Oracle version, the user is prompted to enter the SRID used for the geometry columns, the SRID of
the height system and the URN encoding of the coordinate reference system to be used (see Section 2.8 for more
information).

Note: The setup process will terminate immediately if an error occurs. Reasons might be:

* The user executing CREATE_DB.sql is neither a superuser nor the owner of the specified database (or does not
own privileges to create objects in that database);

¢ The PostGIS extension has not been installed; or

* Parts of the 3D City Database do already exist because of a previous setup attempt. Therefore, make sure that
the schemas ‘citydb’ and ‘citydb_pkg’ do not exist in the database when setting up the 3D City Database.

After a series of log messages reporting the creation of database objects, the chosen reference system is applied to the
spatial columns (expect for those that will store data with local coordinate systems). This takes some seconds and is
finished when the word ‘Done’ is displayed.

Step 5 — Check if the setup is correct

The 3D City Database is stored in a separate PostgreSQL schema called ‘citydb’. The stored procedures are written
to a separate PostgreSQL schema called ‘citydb_pkg’. Usually different schemas have to be addressed in every query
via dot notation, e.g.

’SELECT %+ FROM citydb.building;

Fortunately, this can be avoided when the corresponding schemas are on the database search path. The search path is
automatically adapted during the setup. Execute the command

’SHOW search_path;

to check if the schemas citydb, citydb_pkg and public (for PostGIS elements) are contained.

Note: When using the created 3D City Database as a template database for new databases, the search path information
is not transferred and thus has to be set again, e.g.:

ALTER DATABASE new_citydb_v4 SET search_path TO citydb, citydb_pkg, public;

The search path will be updated upon the next login, not within the same session.

To drop the 3D City Database with all data, execute the DROP_DB.sql script in the same way like CREATE_DB.sql.
Simply dropping the schemas ‘citydb’ and ‘citydb_pkg’ in a cascading way will also do the job.

1.4 Migration from previous releases

Scripts are located in the folder 3dcitydb/[oracle/postgresql]/MIGRATION within the installation directory of the
Importer/Exporter tool. A migration path is provided for 3D City Databases of version 2.1 and of version 3.3.

1.4. Migration from previous releases 13

3D City Database for CityGML, Release 4.1

Hint: Another safe and simple migration approach is to export the database content from the v2.x/v3.x instance
as CityGML with the previous version of the Importer/Exporter and re-import the data into the new 3D City Database
version by using the new Importer/Exporter shipped with this release. This approach might take more time though,
depending on the amount of data stored in the database.

Note: The migration scripts do not handle version-enabled tables under Oracle. Therefore, if you are using Oracle
and have enabled versioning, then exporting and re-importing the data is the recommended way to migrate to the new
3DCityDB version.

To start the migration process run the MIGRATE_DB shell script. Make sure, the database credentials taken from
the CONNECTION_DETAILS file are correct. With the first input you need to enter the major version number of
the currently installed 3D City Database instance — either ‘2¢ or ‘3¢. To identify the actual version of your 3D City
Database you can use the Importer/Exporter tool to connect to the 3D City Database instance that you want to upgrade.
Starting from v3.0.0 the version string is printed to the console window after the connection has been successfully
established as shown below (see also chapter about Managing connections).

intro/../media/first_step_3dcityb_version_info.png

Fig. 1.3: Version information of a 3D City Database.

If the version string does not show up, you are running a v2.x instance. Alternatively, the version information can also
be queried using database-side functions.

For Oracle the command is:

’SQL> select MAJOR_VERSION from table (CITYDB_UTIL.CITYDB_VERSION); ‘

For PostgreSQL it is:

’psql> SELECT major_version FROM citydb_pkg.citydb_version(); ‘

If the function is not known to the system, you are probably running a v2.x instance. For Oracle Database, migrating
from v2 to v4 has some prerequisites which are explained in the next chapter.

1.4.1 V2 to V4 Migration on Oracle

Step 1 — Upgrade an existing installation

The migration to v4.0 must be carried out on a version 2.1.0 instance of the 3D City Database. Versions prior to
version 2.1.0 must first be upgraded to 2.1.0 since the internal storage of envelopes of city objects changed substan-
tially. Corresponding upgrade scripts are shipped with the v2.1.0 release. Upgrades to 2.1.0 can be carried out from
any older version 2.0.0 to 2.0.6. A more detailed description of the upgrade procedure can be found in the document
“Documentation of the 3D City Database v2.1.0 and the Importer/Exporter v1.6.0”.

Before upgrading your 3D City Database, a database backup is highly recommended to secure all data. The latter can
be easily done using the Importer/Exporter tool or by tools provided by Oracle.

14 Chapter 1. First steps

3D City Database for CityGML, Release 4.1

Important: Please note that the last step in the upgrade process is a lengthy one. Altering the internal storage of the
envelopes of all city objects in a large and/or versioned database may take hours. Depending on their initial state,
spatial indexes may be disabled and re-enabled in the process, adding to the duration as a whole. This process MUST
NOT be interrupted since it could lead to an inconsistent state. Please be patient and remember that backing up all of
your data before starting any database upgrade is the commonly recommended practice.

Step 2 — Creating a new installation

The migration script transfers data from a user schema with the v2.1.0 installation to another user schema that has to
contain the 3D City Database schema v4.0. Install the new version like it is described in Section 1.3 if not done so yet.

Step 3 — Grant select on v2.1.0 schema to v4.0 schema

The migration process requires that the user with the v4.0 schema can access the user schema with the v2.1.0 version.
Therefore, run the GRANT_ACCESS_V?2 shell script (see Section 1.3.1) as the V2 user. When executed the user is
requested to type in the schema name for the 3D City Database v4.0 instance.

Step 4 - Run MIGRATE_DB

Now, start the MIGRATE_DB script located in the same folder like GRANT_ACCESS_V2 as the V4 user. Choose
the value 2 as first input and specify the name of the schema with the v2.1.0 instance.

Step 5 — Be sure of using unique texture URIs

Starting from v3.0.0 of the 3D City Database, textures that are referenced to more than one geometry are no longer
stored redundantly in the SURFACE_DATA table but only once in the TEX_IMAGE table. This optimization can
also be done during the migration process, if it is guaranteed that texture URIs are unique and not used for different
texture files. Otherwise, some textures would get lost during the migration and remaining images would be referenced
to wrong surfaces. Therefore, if you can assure the non-existence of duplicate texture URIs, verify with ‘y’ or ‘yes’.
In case you know that textures in the database are named equally (or if you do not know) you can still run the script by
entering ‘n’ or nothing (because it is the default). Entries in the TEX_IMAGE column of the SURFACE_DATA table
from version 2.1 are then further mapped 1:1 to the TEX_IMAGE table of version 4.0.

Note: A simple unification of texture URIs in advance of the migration will not help to store the textures only
once, because same textures with different URIs are regarded as different image files and would all end up in the new
TEX_IMAGE table. You would have to compare the binary data itself.

Step 6 — Choose Spatial or Locator license option

With the last input parameter you specify the database license running on your Oracle server, like you have done when
setting up the v4.0 instance of the 3D City Database. Choose ‘S’ for Spatial (which will additionally migrate raster
data) and ‘L’ for Locator.

Step 7 — Check if the setup is correct

The script temporary disables databases indexes and foreign key constraints and creates an additional package with
migration procedures (CITYDB_MIGRATE). The package is removed again when the migration progress is completed
and the message “DB migration is completed successfully.” is displayed on the console. It is recommended to generate
a database report of the new user schema and compare it with a report of the schema that contains the 2.1 instance of
the 3D City Database (done with the previous version of the Import/Export tool). Verify that

* no city objects are missing (do a database report),

* indexes and foreign keys got activated again,

* relations between features and attributes are correct, and
* exports look correct inside a viewer application.

Step 8 — Drop the deprecated v2.x schema

1.4. Migration from previous releases 15

3D City Database for CityGML, Release 4.1

If the migration was successful, the v2.x user simply has to invoke the DROP_DB (of version 2.x) to drop the depre-
cated schema. Deleting the v2.x user works as well.

1.4.2 V2 to V4 Migration on PostgreSQL

Step 1 — Run MIGRATE_DB

For PostgreSQL, setting up a new v4.0 instance is not necessary. Simply execute the MIGRATE_DB shell script and
choose the value 2 as first input.

Step 2 — Be sure of using unique texture URIs

Like with the Oracle version, you are requested to guarantee that no texture URI is used for different images. See Step
5 in the workflow explanation of the Oracle version for further details.

Step 3 — Check if the setup is correct

After a series of log messages reporting the selection of data from the v2.x schema, updates of references and the
creation of database objects, the script is finished with the message ‘3DCityDB migration complete!’. If the old
database schema is not dropped during the migration (see last step), both versions of the 3D City Database will remain
in one database. This is actually a good thing, because you can further compare if everything has been transferred
correctly.

Idempotent migration

If the migration process has been interrupted by the user or by severe software errors, the migration script can simply
be executed again (only if the old v2.x schema still exists) without manually dropping already created parts of the v4.0
schema because the script does it for you.

Step 4 — Drop the deprecated v2.x schema
To remove the deprecated parts of your 3D City Database invoke the DROP_DB_V2 shell script.

Warning: DO NOT execute the DROP_DB script as the old and new instance of the 3D City Database are
both stored inside the same database (new = citydb schema, old = public schema). DROP_DB drops all database
schemas where it finds a DATABASE_SRS table, so all you data would be lost. Be careful!

1.4.3 V3 to V4 Migration

The migration process from v3 to v4 does not require any user inputs after entering the value ‘3¢ in the MIGRATE_DB
script (except for choosing the license under Oracle).

Note: Schema changes on existing tables are applied with ALTER TABLE statements which can lock these tables for
a longer period if they contain millions of rows.

1.4.4 Upgrade between minor releases

Every minor release of the 3D City Database is shipped with an upgrade script if necessary. Starting from version
4.x.x it can be found in the MIGRATION folder. Like with other database DDL tasks a shell script will be provided
as well to ease the upgrade process. Make sure to first check the current version of your 3D City Database installation
before performing an upgrade, as mentioned in the migration chapter.

During an upgrade check the output messages of the script for errors and warnings. The process should finish the
message 3D City Database upgrade complete.

16 Chapter 1. First steps

3D City Database for CityGML, Release 4.1

1.5 3DCityDB Docker Images

Docker is a widely used virtualization technology that makes it possible to pack an application with all its required
resources into a standardized unit - the Docker Container. Software encapsulated in this way can run on Linux, Win-
dows, macOS and most cloud services without any further changes. Docker containers are lightweight compared to
traditional virtualization environments that emulate an entire operating system because they contain only the applica-
tion and all the tools, program libraries, and files it requires.

1.5.1 Getting started

The Docker Container for 3D City Database is based on the Open Source database management system PostgreSQL
and the PostGIS extension for spatial data. The image is freely available via DockerHub and can be directly down-
loaded and used. The detailed documentation and source code can be found on the GitHub project page (see below).
All that is needed is a Docker installation on your system. The time-consuming installation of a database server, its
configuration, the installation of a database extension for spatial data and the setup of the 3D City Database data model
are a thing of the past. An example for setting up a 3DCityDB using Docker from a command line is given below:

Windows

docker run -dit --name citydb-container -p 5432:5432"
—-e "SRID=31468""
—-e "SRSNAME=urn:adv:crs:DE_DHDN_3GK4+DE_DHN92_NH""
tumgis/3dcitydb-postgis

Linux

docker run -dit --name citydb-container -p 5432:5432 \
—e "SRID=31468" \
—e "SRSNAME=urn:adv:crs:DE_DHDN_ 3GK4*DE_DHN92 NH" \
tumgis/3dcitydb-postgis

Note: In the examples above the long commands are broken to several lines for readability using the Bash () or CMD
(™) line continuation.

The docker run command fetches the most recent version of the Docker image from the Docker hub. This image
includes a PostgreSQL/PostGIS installation. The 3DCityDB schema is being installed and a new and empty 3DCityDB
database is created using the SRID 31468 and GML SRSName “urn:adv:crs:DE_DHDN_3GK4*DE_DHN92_NH”.
After completion of the command the user can directly start importing a CityGML file into the database using the
Importer/Exporter tool, which must have been installed locally.

1.5.2 Further images
In addition to the Docker Image for the 3D City Database, Docker Images for the 3DCityDB Web Feature Service
(WFS) and the 3D Web Map Client are also available.

Docker Compose files are available for orchestrating the individual services. This allows for example, that a single
command call can be used to create a 3DCityDB linked to a 3DCityDB WEFS, which makes the data from the database
accessible via a standardized web interface.

Downloads, documentation and source code

The documentation and source code for the individual images can be found on the Github project pages listed below.
If you experience any problems or want to contribute, please submit an Github issue or pull request.

1.5. 3DCityDB Docker Images 17

https://hub.docker.com/u/tumgis/
urn:adv:crs:DE_DHDN_3GK4*DE_DHN92_NH
https://hub.docker.com/u/tumgis/

3D City Database for CityGML, Release 4.1

3DCityDB PostGIS
* Documentation, source code https://github.com/tum-gis/3dcitydb-docker-postgis
* Image download https://hub.docker.com/r/tumgis/3dcitydb-postgis/
3DCityDB Web Feature Service (WFS)
* Documentation, source code https://github.com/tum-gis/3dcitydb-wfs-docker
* Image download https://hub.docker.com/r/tumgis/3dcitydb-wfs/
3DCityDB 3D Web Map Client
¢ Documentation, source code https://github.com/tum-gis/3dcitydb-web-map-docker
* Image download https://hub.docker.com/r/tumgis/3dcitydb-web-map/
3DCityDB Docker Compose service orchestration
¢ Download, Documentation, and source code
https://github.com/tum-gis/3dcitydb-docker-compose

The individual components of the 3D City Database are also available as images for the Docker virtualization tech-
nology. This makes it possible to install and configure a 3D City Database with a single command line statement in
almost any runtime environment. See Section 1.5 for more details.

18 Chapter 1. First steps

https://github.com/tum-gis/3dcitydb-docker-postgis
https://hub.docker.com/r/tumgis/3dcitydb-postgis/
https://github.com/tum-gis/3dcitydb-wfs-docker
https://hub.docker.com/r/tumgis/3dcitydb-wfs/
https://github.com/tum-gis/3dcitydb-web-map-docker
https://hub.docker.com/r/tumgis/3dcitydb-web-map/
https://github.com/tum-gis/3dcitydb-docker-compose

CHAPTER 2

3D City Database

2.1 Introduction

Virtual 3D city and landscape models are provided for an increasing number of cities, regions, states, and even coun-
tries. They are created and maintained by public authorities like national and state mapping agencies as well as by
cadastre institutions and private companies. The 3D topography of urban and rural areas is essential for both visual ex-
ploration and a range of different analyses in, for example, the urban planning, environmental, energy, transportation,
and facility management sectors.

3D city models are nowadays used as an integrative information backbone representing the relevant urban entities
along with their spatial, semantic, and visual properties. They are often created and maintained with full coverage of
entire cities and even countries, i.e. all real world objects of a specific type like buildings, roads, trees, water bodies,
and the terrain are explicitly represented. In most cases the 3D city model objects have well-defined identifiers, which
are kept stable during the lifetime of the real world objects and their virtual counterparts. Such complete 3D models are
a good basis to organize different types of data and sensors within Smart City projects as they build a stable platform
for information linking and enrichment.

In order to establish a common understanding and interpretation of the urban objects and to achieve interoperable
access and exchange of complete 3D models including the geometric, topologic, visual, and semantic data, the Open
Geospatial Consortium (OGC) has issued the CityGML standard [Kolb2009]. CityGML defines a feature catalogue
and data model for the most relevant 3D topographic elements like buildings, bridges, tunnels, roads, railways, veg-
etation, water bodies, etc. The data model is mapped to an XML-based exchange format using OGC’s Geography
Markup Language (GML).

The 3D City Database (3DCityDB) is a free Open Source package consisting of a database schema and a set of software
tools to import, manage, analyse, visualize, and export virtual 3D city models according to the CityGML standard
[YNKH2018]. The database schema results from a mapping of the object oriented data model of CityGML 2.0 to
the relational structure of a spatially-enhanced relational database management system (SRDBMS). The 3DCityDB
supports the commercial SRDBMS Oracle (with Spatial or Locator license options) and the Open Source SRDBMS
PostGIS (which is an extension to the free RDBMS PostgreSQL). 3DCityDB makes use of the specific representation
and processing capabilities of the SRDBMS regarding the spatial data elements. It can handle also very large models
in multiple levels of details consisting of millions of 3D objects with hundreds of millions of geometries and texture
images.

19

https://www.opengeospatial.org/standards/citygml

3D City Database for CityGML, Release 4.1

3DCityDB is in use in real life production systems in many places around the world and is also being used in a number
of research projects. For example, the cities of Berlin, Potsdam, Munich, Frankfurt, Zurich, Rotterdam, Singapore all
keep and manage their virtual 3D city models within an instance of 3DCityDB. The companies virtualcitySYSTEMS
(VCS) and M.O.S.S., who are also partners in development, use 3DCityDB at the core of their commercial products
and services to create, maintain, visualize, transform, and export virtual 3D city models (see Appendix B, Appendix
C, and Appendix D for examples how and where TUM, virtualcitySYSTEMS, and M.O.S.S. employ 3DCityDB in
their projects). Furthermore, the state mapping agencies of all 16 states in Germany store and manage the state-
wide collected 3D building models in CityGML LOD1 and LOD2 using 3DCityDB. In 2012 the previous version of
3DCityDB and the developer team received the Oracle Spatial Excellence Award, issued by Oracle USA.

Since 3DCityDB is based on CityGML, interoperable data access from user applications to the database can be
achieved in at least two ways:

1) by using the included high-performance CityGML Import/Export tool or the included basic Web Feature Service
2.0 in order to exchange the data in CityGML format (Version 2.0 or 1.0), and

2) by directly accessing the database tables whose relational structures are fully explained in detail within this
document. It is easy to enrich a 3D city model by adding information to the database tables in some user
application (using e.g. the database APIs of programming language like C++, Java, Python, or of ETL tools like
the Feature Manipulation Engine from Safe Software). The enriched dataset then can be exchanged or archived
by exporting the city model to CityGML without information loss. Analogously, 3DCityDB can be used to
import a CityGML dataset and then access and work with the city model by directly accessing the database
tables from some application programs or ETL software.

The Import/Export tool also provides functionalities for the direct export of 3D visualization models in KML, COL-
LADA, and gITF formats. A tiling strategy is supported which allows to visualize even very large 3D city and land-
scape models in geoinformation systems (GIS) or digital virtual globes like Google Earth or CesiumJS Virtual Globe.
The Import/Export tool comes with an API to create further importers, exporters, and database administration tools.

One export plugin coming with the software installer package is the so-called ‘Spreadsheet Generator Plugin’ (SPSHG)
which allows to export thematic data of 3D objects into tables in CSV and Microsoft Excel format that can be easily
uploaded to and published as online spreadsheets, for instance, within the Google Cloud.

Starting from release 3.3.0, 3DCityDB software package comes with the Cesium]S-based 3D viewer called
“3DCityDB-Web-Map-Client” which can link the 3D visualization models with online spreadsheets and facilitates
interactive visualization and exploration of 3D city models over the internet within web browsers on desktop and mo-
bile computers. The most significant new functionality in release 4.0.0 is the support of CityGML Application Domain
Extensions (ADEs). ADEs extend the CityGML datamodel by domain specific object types, attributes, and relations.

This documentation describes the design and the components of the 3D City Database as well as their usage for the
new major release 4.0.0 which has been developed and implemented by the three partners in development, namely the
Chair of Geoinformatics at Technische Universitdt Miinchen, virtualcitySYSTEMS, and MOSS.

The development is continuing the previous work carried out at the Institute for Geodesy and Geoinformation Science
of the Berlin University of Technology and the Institute for Cartography and Geoinformation of the University of
Bonn.

Some figures and texts are cited from the OpenGIS City Geography Markup Language (CityGML) Encoding Standard,
Version 2.0.0 [GKNH2012].

2.2 Main features of 3DCityDB

Many (but not all) of the features referring to object modelling and representation are implied by following the
CityGML standard 2.0.0 issued by the Open Geospatial Consortium.

20 Chapter 2. 3D City Database

https://www.gis.bgu.tum.de/en/home/
https://www.virtualcitysystems.de/en/
https://www.moss.de/
https://www.igg.tu-berlin.de/menue/institut_fuer_geodaesie_und_geoinformationstechnik/parameter/en/
https://www.geoinfo.uni-bonn.de/en

3D City Database for CityGML, Release 4.1

2.2.1 CityGML 2.0.0 and 1.0.0 compliant database

The implementation defines the classes and relations for the most relevant topographic objects in cities and regional
models with respect to their geometrical, topological, semantical, and appearance properties. Included are general-
ization hierarchies between thematic classes, aggregations, relations between objects, and spatial properties. These
thematic information go beyond graphic exchange formats and allow to employ virtual 3D city models for sophisti-
cated analysis tasks in different application domains.

For the representation of all vector and grid geometry the built-in data types provided by the spatially-enhanced
relational database management systems Oracle Spatial/Locator (10G R2 or higher) or PostgreSQL (9.1 or higher)
with PostGIS extension (2.0 or higher) are used. This way, special solutions are avoided and different geoinformation
systems, CAD/BIM systems, and ETL software systems can directly access (read and write) the geometry objects
stored in the SRDBMS.

The version and history management employs Oracle’s Workspace Manager and, hence, is only available for 3DC-
ityDB instances running on an Oracle RDBMS. It is largely transparent to application programs that work with the
database.

2.2.2 Support for CityGML Application Domain Extensions (ADEs)

Semantic 3D city models are employed for many different applications from diverse domains like energetic, envi-
ronmental, driving, and traffic simulations, as-built building information modeling (as-built BIM), asset management,
and urban information fusion. In order to store and exchange application specific data aligned and integrated with
the 3D city objects, the CityGML datamodel can be extended by new feature types, attributes, and relations using the
CityGML ADE mechanism. ADEs are specified as (partial) GML application schemas using the modeling language
XML Schema. Starting from release 4.0.0 the 3DCityDB database schema can be dynamically extended by arbitrary
ADE:s like the Energy ADE, UtilityNetwork ADE, Dynamizer ADE, or national CityGML extensions like IMGeo3D
(from The Netherlands).

Since ADEs can define an arbitrary number of new elements with all types and numbers of spatial properties, a trans-
formation method has been developed to automatically derive the relational database schemas for arbitrary ADEs from
the ADE XML schema files. Since we intended to follow similar rules in the mapping of the object-oriented ADE
models onto relational models as we used for the (manual) mapping of the CityGML datamodel onto the 3DCityDB
core schema, the Chair of Geoinformatics at TUM developed a new transformation method based on graph transfor-
mation systems. This method is described in detail in [YaKo2017] and is implemented within the “ADE Manager”
plugin for the Importer/Exporter software tool.

The ADE Manager performs a sophisticated analysis of the XML schema files of an ADE, the automatic derivation of
additional relational table structures, and the registration of the ADE within the 3DCityDB. Furthermore, SQL scripts
are generated for each ADE for e.g. the deletion of ADE objects and attributes from the database. Please note that
in order to support also the import and export of CityGML datasets with ADE contents, a Java library for the specific
ADE has to be implemented. This library has to perform the handling of the CityGML ADE XML elements and the
reading from and writing into the respective ADE database tables using JDBC and SQL. An example how to develop
such a Java library is given for a Test ADE in the 3DCityDB github repository.

2.2.3 Importing and exporting CityGML data

The included Importer/Exporter software tool allows for high performance importing and exporting of CityGML
datasets according to CityGML versions 2.0 and 1.0. The tool allows processing of very large datasets (>> 4 GB),
even if they include XLinks between CityGML features or XLinks to 3D GML geometry objects. The multi-threaded
programming exploits multiprocessor systems or multikernel CPUs to speed up the processing of complex XML-
structures, resulting in high performance database access. Objects can be filtered during import or export according
to spatial regions (bounding box), their object IDs, feature types, names, and levels of detail. Bounding boxes can be
interactively selected using a map window based on OpenStreetMap (OSM).

2.2. Main features of 3DCityDB 21

https://github.com/3dcitydb/extension-test-ade

3D City Database for CityGML, Release 4.1

A tiling strategy is implemented in order to support the export of very large datasets. In case of a very high number
of texture images they can be automatically distributed in a configurable number of subdirectories in order to avoid
large directories with millions of files which can render a Microsoft Windows operating systems unresponsive. The
Importer can also validate CityGML files and can be configured to only import valid features. It considers CityGML
ADE contents, if the ADEs have been registered in the database and specific Java libraries for reading/writing the
ADE contents from/into the ADE database tables is provided (see above). The Importer/Exporter tool can be run in
interactive or batch mode.

2.2.4 Export to KML, COLLADA and gITF

The Importer/Exporter tool can also export city models to KML, COLLADA and gITF formats which can directly
be viewed and interactively explored in geoinformation systems (GIS) or digital virtual globes like Google Earth or
Cesium WebGL Virtual Globe. A tiling strategy is supported where only tiles in the vicinity of the viewer’s location
are being loaded facilitating the visualization of even very large 3D city and landscape models. Information balloons
for all objects can be configured by the user. The exported models are especially suited to be visualized using the
3DCityDB-Web-Map-Client (see below), an Open Source 3D web viewer that is based on the CesiumJS Webglobe
framework with many functional extensions.

2.2.5 Spreadsheet export

The Spreadsheet Generator (SPSHG) allows exporting thematic data of 3D objects into tables in CSV and Microsoft
Excel format which can be uploaded to a Google Spreadsheet within the Google Document Cloud. For every selected
geoobject one row is being exported where the first column always contains the GMLID value of the respective object.
The further columns can be selected by the user. This tool can be used to export attribute data from e.g. buildings
like the class, function, usage, roof type, address, and further generic attributes that may contain information like the
building energy demand, potential solar energy gain, noise level on the facades etc. The spreadsheet rows can be
linked to the visualization model generated by the KML/COLLADA/gITF Exporter. This is illustrated in Appendix B.

2.2.6 Interactive 3D web visualization

The 3DCityDB-Web-Map-Client is a WebGL-based 3D web viewer which extends the Cesium Virtual Globe to support
efficient displaying, caching, prefetching, dynamic loading and unloading of arbitrarily large pre-styled 3D visualiza-
tion models in the form of tiled KML/gITF datasets generated by the KML/COLLADA/gITF Exporter. It provides an
intuitive user interface to facilitate rich interaction with 3D visualization models by means of the enhanced functional-
ities like highlighting the objects of interests on mouseover and mouseclick as well as hiding, showing, and shadowing
them. Moreover, the 3DCityDB-Web-Map-Client is able to link the 3D visualization model with an online spreadsheet
(Google Fusion Table) in the Google Cloud and allows viewing and querying the thematic data of every city object
according to its GMLID. For details see also [YaCK2016] and [ChYK2015].

2.2.7 Web Feature Service (WFS) 2.0

The 3DCityDB comes with an OGC compliant implementation of a basic WES 2.0 allowing web-based access to the
3D city objects stored in the database. WFS clients can directly connect to this interface and retrieve 3D content for
a wide variety of purposes. The implementation currently satisfies the Simple WFS conformance class. The WFS
considers CityGML ADE contents, if the ADEs have been registered in the database and specific Java libraries for
reading/writing the ADE contents from/into the ADE database tables is provided (see above). An implementation of a
full, transactional WFS is commercially available from one of the development partners, see Appendix C.

22 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

2.2.8 Docker support

We now provide Docker images for
1. a complete 3DCityDB installation pre-installed in a PostGIS
2. a webserver with an installed 3DCityDB-Web-Map-Client
3. a3DCityDB WFS

We also provide a Docker-compose script to launch all three Docker containers in a linked way with just a single
command. Details are given in Section 1.5 and in the respective github repositories. Docker is a runtime environment
for virtualization. Docker encapsulates individual software applications in so-called containers, which are — in contrast
to virtual machines — light-weight and can be deployed, started and stopped very quickly and easily. Using our Docker
images a 3DCityDB can be installed by a single command.

2.2.9 Open Source and Platform Independence

The entire software is freely accessible to the interested public. The 3DCityDB is licensed under the Apache License,
Version 2.0, which allows including 3DCityDB in commercial systems. You may obtain a copy of the Apache License
at http://www.apache.org/licenses/LICENSE-2.0. Both the Importer/Exporter tool and the Web Feature Service are
implemented in Java and can be run on different platforms and operating systems.

2.2.10 Features inherited from CityGML

* Complex city object modelling: The representation of city objects in the 3D city database ranges from coarse
models to geometrically and semantically fine grained structures. The underlying data model is a complete
realization of the CityGML data model for the levels of detail (LOD) O to 4. For example, buildings can be
represented by simple, monolithic objects or can consist of an aggregation of building parts. Extensions of
buildings, like balconies and stairs, can be classified thematically and provided with attributes just as single
surfaces can be. LOD4 completes a LOD3 model by adding interior structures for 3D objects. For example,
LOD4 buildings are composed of rooms, interior doors, stairs, and furniture. This allows among other things to
select the floor space of a building, so that it can later be used e.g. to derive SmartBuildings or to form 3D solids
by extrusion [DBBF2005]. Buildings can be assigned addresses that are also stored in the 3D city database.
Their implementation refers to the OASIS xAL Standard, which maps the address formats of the different
countries into a unified XML schema. In order to model whole complexes of buildings, single buildings can be
aggregated to form special building groups. The same complex modelling applies to the other CityGML feature
types like bridges, tunnels, transportation and vegetation objects, and water bodies.

* Complex digital terrain models: DTMs may be represented in four different ways in CityGML and therefore
also in the 3D city database: regular grids, triangular irregular networks (TINs), 3D mass points and 3D break
lines. For every level of detail, a complex DTM consisting of any number of DTM components and DTM types
can be defined. Besides, it is possible to combine certain kinds of DTM representations for the same geographic
area with each other (e.g. mass points and break lines or grids and break lines). In Oracle Spatial (but not
Locator) Grid-based DTMs may be of arbitrary size and are composed from separate tiles to a single overall
grid using the Oracle GeoRaster functionality. Please note that the Import/Export tool provides functions to read
and write TIN, mass point, and break line DTM components, but not for raster based DTMs. GeoRaster data
would have to be imported and exported using other tools from e.g. Oracle, ESRI, or Safe Software.

* Support of different kinds of multi-representations: Levels of detail, different appearances, (and with
Oracle RDBMS only) planning versions and history: Every geoobject as well as the DTM can be represented
in five different resolution or fidelity steps (Levels of Detail, LOD). With increasing LOD, objects do not only
obtain a more precise and finer geometry, but do also gain a thematic refinement. Different appearance data may
be stored for each city object™*: Appearance relates to any surface-based theme, e.g. infrared radiation or noise
pollution, not just visual properties. Consequently, data provided by appearances can be used as input for both

2.2. Main features of 3DCityDB 23

https://www.docker.com/
https://github.com/tum-gis?q=docker
http://www.apache.org/licenses/LICENSE-2.0

3D City Database for CityGML, Release 4.1

presentation and analysis of virtual 3D city models. The database supports feature appearances for an arbitrary
number of themes per city model. Each LOD of a feature can have individual appearances. Appearances can
represent — among others — textures and georeferenced textures. All texture images can be stored in the database.
(cf. [GKSS2005])

Representation of generic and prototypical 3D objects: Generic objects enable the storage of 3D geoobjects
that are not explicitly modelled in CityGML yet, for example dams or city walls, or that are available in a
proprietary file format only. This way, files from other software systems like architecture or computer graphics
programs can be imported directly into the database (without interpretation). However, application systems that
would like to use these data must be able to interpret the corresponding file formats after retrieving them back
from the 3D geodatabase.

Prototypical objects are used for memory-efficient management of objects that occur frequently in the city model
and that do not differ with respect to geometry and appearance. Examples are elements of street furniture like
lanterns, road signs or benches as well as vegetation objects like shrubs, certain tree types etc. Every instance
of a prototypical object is represented by a reference to the prototype, a base point and a transformation matrix
for scaling, rotating and translating the prototype.

The geometries (and appearances like textures, colors etc.) of generic objects as well as prototypes can be
stored either using the geometry datatype of the spatial database management system (Oracle Spatial/Locator
or PostGIS) or in proprietary file formats. In the latter case a single file may be saved for every object, but the
file type (MIME type), the coordinate transformation matrix that is needed to integrate the object into the world
coordinate reference system (CRS) and the target CRS have to be specified.

Extendable object attribution: All objects in the 3D geodatabase can be augmented with an arbitrary number
of additional generic attributes. This way, it is possible to add further thematic information as well as further
spatial properties to the objects at any time. In combination with the concept of generic 3D objects this provides
a highly flexible storage option for object types which are not explicitly defined in the CityGML standard. Every
generic attribute consists of a triple of attribute name, data type, and value. Supported data types are: string;
integer and floating-point numbers; date; time; binary object (BLOB, e.g. for storing a file); geometry object
according to the specific geometry data type of Oracle or PostGIS respectively; simple, composite, or aggregate
3D solids or surfaces. Please note that generic attributes of type BLOB or geometry are not allowed as generic
attributes in CityGML (and will, thus, not be exported by the CityGML exporter). However, it may be useful to
store binary data associated with the individual city objects, for example, to store derived 3D computer graphics
representations.

Free, also recursive grouping of geoobjects: Geoobjects can be grouped arbitrarily. The aggregates can be
named and may also be provided with an arbitrary number of generic attributes (see above). Object groups may
also contain object groups, which leads to nested aggregations of arbitrary depth. In addition, for every object
of an aggregation, its role in the group can be specified explicitly (qualified association).

External references for all geoobjects: All geoobjects can be provided with an arbitrary number of references
to corresponding objects in external data sources (i.e. hyperlinks / linked data). For example, in case of building
objects this allows to store e.g. the IDs of the corresponding objects in official cadasters, digital landscape
models (DLM), or Building Information Models (BIM). Each reference consists of an URI to the external data
store or database and the corresponding object ID or URI within that external data store or database.

Flexible 3D geometries: The geometry of most 3D objects can be represented through the combination of
solids and surfaces as well as any - also recursive - aggregation of these elements. Each surface may has attached
different textures and colors on both its front and back face. It may also comprise information on transparency.
Additional geometry types (any geometry type supported by the spatial database management system Oracle
Spatial/Locator or PostGIS) can be added to the geoobjects by using generic attributes.

24

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

2.3 System and design decisions

The 3D City Database is implemented as a relational database schema using the spatial datatypes provided by a
spatially-enhanced relational database management system (SRDBMS). Above, external software applications and
database stored procedures are provided working on this database schema. Since only Oracle with the Spatial or
Locator licensing option (10G R2 or higher) and PostgreSQL (9.3 or higher) with PostGIS extension (2.0 or higher)
offer comprehensive support for 3D spatial data, the 3D City Database schema is being provided for these two systems
only.

In addition to the general advantages arising from the usage of a widely used relational database management system
(RDBMS), both Oracle Spatial/Locator and PostgreSQL/ PostGIS offer some important performance characteristics
that allow an efficient implementation of the required functionalities:

* Both RDBMS support spatial data types with coordinates ranging from 2D to 4D. Spatial indexes and filters can
be 2D or 3D allowing for efficient spatial selections in very large city models.

* The spatial data types are supported by a number of commercial and Open Source GIS that provide a database
connection as for example ESRI’s ArcGIS/ArcSDE or Safe Software’s Feature Manipulation Engine (FME).
This enables such systems to directly access the data stored in the 3D geodatabase.

* Rules can be implemented using stored procedures and trigger mechanisms which propagate updates of objects
to likewise affected objects in the database (transparent for the user).

The data model of the 3D City Database is based on the CityGML 2.0 standard. The object-oriented data model of
CityGML has been mapped to a purely relational data model with the exception that geometry objects are mapped
to the spatial datatypes provided by the SDBMS. In order to achieve high performance for data manipulations and
queries the mapping was done manually with a number of optimizations. A few simplifying assumptions where made
regarding the usage of the CityGML concepts in the real world helping to increase performance. These are documented
in the data modelling chapter.

Surface-based geometries like Polygons, TINs, MultiSurfaces as well as Solids are stored in a special way: they are
decomposed into their primitive surfaces and each surface is stored as an individual tuple in one big surface table.
The reason for this is that each surface can be assigned multiple appearances (e.g. textures) in CityGML and, thus,
each appearance must be explicitly linkable to the corresponding surface. For Solids also the solid geometry objects
are stored in addition to their decomposed boundary surfaces allowing to apply spatial operations on them like the
computation of the volume.

The provided software tools like the Importer/Exporter application are implemented in the Java language in order to
be platform independent. The tools have been confirmed to run under Microsoft Windows, Linux, and Apple Mac OS
X. High performance is achieved by exploiting multi-threading on multiprocessor or multi-core CPU systems.

2.4 Development history

2.4.1 Version 1 - 2003 - 2007

The development of the 3D City Database was always closely related to the development of the CityGML standard
[KoGr2003]. It was started back in 2003 by Dr. Kolbe and Prof. Pliimer at the Institute for Cartography and Geoinfor-
mation at University of Bonn. In the period from November 2003 to December 2005 the official virtual 3D city model
of Berlin, commissioned by The Berlin Senate and Berlin Partner GmbH, was developed within a pilot project funded
by the European Union [PGKS2005]. Since then, the model has been playing a central role in the three-dimensional
spatial data infrastructure of Berlin and opened up a multitude of applications for the public and private sector alike.
As an example the virtual city model is successfully used for presentation of the business location, its urban develop-
ment combined with application related information to politicians, investors, and the public in order to support civic
participation, provide access to decision-making content, assist in policy-formulation, and control implementation pro-
cesses [DKLS2006]. 3DCityDB was key in demonstrating the real world usage of CityGML to the Open Geospatial

2.3. System and design decisions 25

3D City Database for CityGML, Release 4.1

Consortium on the one hand, and the practical usability and versatility of CityGML to the city of Berlin on the other
hand. This first development phase was carried out by University of Bonn in collaboration with the company lat/lon
GmbH. Oracle Spatial was the only supported SDBMS in that phase and the next (3DCityDB Versions 0.2 up to 1.3).

2.4.2 Version 2 - 2006 - 2014

Within the framework Europdische Fonds fiir regionale Entwicklung (EFRE II) the project Geodatenmanagement in
der Berliner Verwaltung — Amtliches 3D-Stadtmodell fiir Berlin allowed for upgrading the official 3D city model based
on the former CityGML specification draft 0.4.0 in the year 2007. The developments were carried out by the Institute
for Geodesy und Geoinformation Science (IGG) of the Berlin University of Technology (where Kolbe became full
professor for Geoinformation Science in 2006) on behalf of the Berliner Senatsverwaltung fiir Wirtschaft, Arbeit und
Frauen and the Berlin Partner GmbH (former Wirtschaftsforderung Berlin International). The relational database
model (3DCityDB versions 1.4 up to 1.8) was implemented and evaluated in cooperation with 3DGeo GmbH (later
bought by Autodesk GmbH) in Potsdam. A special database interface for LandXPlorer was provided by 3DGeo /
Autodesk. Later on, a first version of the Java based CityGML Importer/Exporter was developed [SNKK2009].

In August 2008, CityGML 1.0.0 became an adopted standard of the Open Geospatial Consortium (OGC). In the follow-
up project Digitaler Gestaltplan Potsdam starting in 2010 the 3DCityDB version 2 (cf. [KKNS2009] and [NaSt2008])
was developed which brought support for all CityGML 1.0.0 feature types. The KML/COLLADA exporter was added
as well as a ‘Matching’ plugin. This project was carried out by /GG of TU Berlin on behalf of and in collaboration
with the company virtualcitySYSTEMS (VCS) in Berlin. In 2012 the developer team at TU Berlin received the Oracle
Spatial Excellence Award for Education and Research from Oracle USA for our work on 3DCityDB. Also in 2012
3DCityDB was ported to PostgreSQL/PostGIS by Felix Kunde, a master student from the University of Potsdam, who
did his master thesis in collaboration with /GG [Kund2013].

In August 2012, CityGML 2.0.0 became an adopted standard of the Open Geospatial Consortium (OGC). In September
2012, Prof. Kolbe moved from IGG, TU Berlin to the Chair of Geoinformatics at Technische Universitdt Miinchen
(TUM). The companies virtualcitySYSTEMS GmbH in Berlin and M.O.S.S. Computer Grafik Systeme GmbH in
Taufkirchen (near Munich) have also been using the 3D City Database in their commercial projects for a number of
years. In this context, the Chair of Geoinformatics at TUM and the companies virtualcitySYSTEMS and M.O.S.S.
signed an official collaboration agreement on the joint further development of 3DCityDB and its tools.

2.4.3 Version 3 -2013 - 2018

The work on the new major release version 3.0.0 began in 2013 when Dr. Nagel finished his PhD and joined the
company VCS. In Version 3.3.0 the new 3D web client was being added. The webclient was developed by Zhihang
Yao with contributions from Kanishk Chaturvedi and Son Nguyen. In 2015 Zhihang Yao and Kanishk Chaturvedi
were awarded the first price in the ‘Best Students Contribution’ of the “Web3D city modeling competition” under the
annual ACM SIGGRAPH Web3D Conference for the 3DCityDB-Web-Map-Client.

2.4.4 Version 4 - since 2015

The work on version 4.0.0 — especially the support of CityGML ADEs — began in 2015 in the course of the PhD
work of Zhihang Yao. One part of his PhD thesis is focusing on the model transformation of CityGML ADEs onto
spatial relational databases using pattern matching and graph transformation rules. Support of CityGML ADEs in the
Importer/Exporter required a substantial rewriting of the citygml4j Java library, the Importer/Exporter and WES source
code performed by Dr. Nagel starting from 2016. Felix Kunde worked, among others, on performance improvements
and restructuring of the PL/(pg)SQL scripts. Son Nguyen added support for mobile devices in the 3DCityDB-Web-
Map-Client in 2017. Docker support was added by Bruno Willenborg in 2018. Starting from 2017 all partners worked
on updating diverse functionalities, scripts, documentation, and on testing.

26 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

2.4.5 Acknowledgements

The 3D City Database project team is grateful and appreciative for the financial assistance and support we received
from partners that contributed to the development of version 4.0 and the work on the ADE support.

Government Technology Agency of Singapore

The Government Technology Agency of Singapore (GovTech Singapore) has been developing a 3D city standard for
Singapore based on CityGML, to establish a common 3D representation of the city-state. GovTech wanted to extend
the representation to include other city features through the ADE approach, and had worked with virtualcitySYS-
TEMS GmbH to start the development of the ADE support on 3DCityDB. The intent is to open source the 3DCityDB
ADE support to the international community, so as to encourage wider adoption and implementation of the CityGML
standard and ADEs.

CADFEM International GmbH

Founded in 1985, CADFEM is one of the pioneers of numerical simulation based on the Finite Element Method and
one of the largest European suppliers of Computer-Aided Engineering. Through the Leonard Obermeyer Center of
the Technical University Munich, CADFEM supports the research on digital methods for the design, creation and
maintenance of the built environment and the work on the 3D City Database. Bridging the gap between simulation
systems and 3D GIS / BIM is a key requirement for enabling multi-physics Urban Simulations and for building Digital
Twins of the urban space. The CityGML ADE mechanism supports this in two ways: 1) city features can be enriched
with data that is relevant for simulations, and 2) simulation results can be brought back into the city model, turning it
into a dynamic knowledge base. CADFEM is supporting the 3D City Database project to leverage the adoption and
usage of CityGML ADE:s in the field of Urban Simulations.

Climate-KIC of the EIT

Climate-KIC is a so-called ‘Knowledge and Innovation Community’ about Climate Change and Mitigation. It is one
of three Knowledge and Innovation Communities (KICs) created in 2010 by the European Institute of Innovation
and Technology (EIT). The EIT is an EU body whose mission is to create sustainable growth. Most 3DCityDB
developments at TU Munich were done in the context of the projects Energy Atlas Berlin, Modeling City Systems
(MCS), Smart Sustainable Districts (SSD), and Smart District Data Infrastructure (SDDI), all financially supported by
Climate-KIC.

2.4.6 List of changes between software versions

2.4.6.1 Notable changes between 4.0 and 3.3

New features and functionalities:

Importer/Exporter 4.2: Reworked Plugin API to support non-GUI plugins.

Importer/Exporter 4.2: Property projections can now also be defined for abstract feature types.

Importer/Exporter 4.1: Added support for using SQL and XML queries for CityGML exports to be able express
more flexible and complex filter conditions

Importer/Exporter 4.1: Added support for importing CityGML data from (G)ZIP files and exporting CityGML
content to (G)ZIP files

Importer/Exporter 4.1: OSM Nominatim is now used as default geocoder for the map window. Google Map
API services can still be used for the map window and for KML/COLLADA exports but require an API key.

Management and storage of arbitrary CityGML ADEs with the 3DCityDB, the Importer/Exporter ADE Manager
Plugin and the 3DCityDB WFS

New 3DCityDB Docker images to support continuous integration workflows

2.4. Development history 27

3D City Database for CityGML, Release 4.1

New metadata tables ADE, SCHEMA, SCHEMA_REFERENCING and SCHEMA_TO_OBJECTCLASS for
registering CityGML ADEs

New prefilled metadata table AGGREGATION_INFO that supports the automatic generation of DELETE and
ENVELOPE scripts

New function to create entries in USER_SDO_GEOM_METADATA view (Oracle)

Function objectclass_id_to_table_name now has a counterpart: table_name_to_objectclass_ids returning an ar-

ray of objectclass ids (CITYDB_OBJCLASS package in Oracle, part of a data schema in PostgreSQL)

New database procedures to enable/disable foreign key constraints to speed up bulk write operations
(CITYDB_CONSTRAINT package in Oracle, part of the citydb_pkg schema in PostgreSQL)

New SQL script to create additional data schemas in one database (PostgreSQL)

New shell and SQL scripts to grant read-only or full read-write access to another schema.
Importer/Exporter can connect to different database schemas with the same user

Enabling XSL transformations on CityGML imports and exports as well as WFS responses

New database operation panel to change the spatial reference system used in the database (incl. optional coor-
dinate transformation)

New LoD filter for CityGML exports
3DCityDB WES allows for exporting into the CityJSON format

Improved and updated features and functionalities:

Moved interactive prompts from SQL to batch/shell scripts for better setup automation

Added OBJECTCLASS_ID column to all feature tables to distinguish objects from CityGML ADEs. Also
extended OBJECTCLASS table by more feature-specific details and inserted new entries for feature properties
such as geometry, generic attributes etc.

Improved performance on stored procedures by reducing amount of dynamic SQL. Therefore, schema_name
parameter has been removed from DELETE and ENVELOPE scripts. Under PostgreSQL these scripts (as well
as the INDEX_TABLE) are now part of a data schema such as citydb.

DELETE and ENVELOPE are now generated automatically in order to deal with schema changes introduced
by ADEs. Therefore, the function prefix has been shortened to del_ and env_ not hit the character limit under
Oracle,

The CITYDB_DELETE_BY_LINEAGE package has been removed. The only function left is
del_cityobjects_by_lineage which is now part of the DELETE package

Database migration scripts for version 2.1.0 or version 3.3.0 to version 4.0.0
Switching from Ant to Gradle as the new build system for the Importer/Exporter tools
Allow import of CityGML files with flat hierarchies between city objects

Added support for importing gml:MultiGeometry objects containing only polygons
Added support for exporting to gITF v2.0

3DCityDB WFS now supports CORS and provides a KVP over HTTP GET endpoint for every operation sim-
plifying the integration with GIS and ETL software such as FME

28

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

2.5 Data Modelling and Database Design

In this section the slightly simplified data model with respect to CityGML is described at the conceptual level using
UML class diagrams. These diagrams form the basis for the implementation-dependent realization of the model with
a relational database system which is presented in database schema section. However, UML diagrams may also form
the basis for other implementations e.g. for the definition of an exchange format based on XML or GML. The UML
diagrams of the 3D city model are depicted in UML sub chapter.

2.5.1 Simplification compared to CityGML 2.0.0

CityGML is a common information model for 3D urban objects and provides a comprehensive and extensible rep-
resentation of the objects. It is explained in detail in the CityGML specification [GKCN2008], [GKNH2012] and
[Kolb2009]. An analysis of the previous versions of the 3D City Database indicated that for the data collected and
processed a less complex schema is sufficient. Using a simplified schema usually allows improving system perfor-
mance. Therefore, the first task was related to database design aspects with respect to adjusting the comprehensive
CityGML features.

As result a simplified database schema was generated, allowing an optimized workflow and guaranteeing efficient
processing time. The related UML-diagrams were discussed and coordinated with the project partners and translated
into the relational schema. Based on this work the SQL scripts for setting up the Oracle and PostgreSQL database
schema were generated.

Note: All test CityGML datasets (versions 1.0.0 and 2.0.0) from the CityGML homepage (and others) can be stored
and managed without restrictions with this simplified database schema.

2.5.1.1 Multiplicities of attributes

Attributes with a variable amount of occurrences (*) are substituted by a data type enabling the storage of arbitrary
values (e.g. data type String with a predefined separator) or by an array with a predefined amount of elements repre-
senting the number of objects that participate in the association. This means that object attributes can be stored in a
single column.

2.5.1.2 Cardinalities and types of relationships

n:m relations require an additional table in the database. This table consists of the primary keys of both elements’
tables which form a composite primary key. If the relation can be restricted to a /:n or n:1 relationship the additional
table can be avoided. Therefore, all n:m relations in CityGML were checked for a more restrictive definition. This
results in simplified cardinalities and relations.

2.5.1.3 Simplified treatment of recursions

Some recursive relations are used in the CityGML data model. Recursive database queries may cause high cost,
especially if the amount of recursive steps is unknown. In order to guarantee good performance, implementation of
recursive associations receive two additional columns which contain the ID of the parent and of the root element.
For example, if all building parts related to a specific building are queried, only those tuples containing the ID of
the building as root element have to be selected. Thus, typical queries concerning object geometry remain high-
performance.

2.5. Data Modelling and Database Design 29

http://www.citygml.org

3D City Database for CityGML, Release 4.1

2.5.1.4 Data type adaptation

Data types specified in CityGML were substituted by data types which allow an effective representation in the database.
Strings for example are used to represent code types and number vectors; GML geometry types were changed to the
database geometry data type. Matrices are stored each one as String data type, with values listed in a row-major
sequence separated by spaces.

2.5.1.5 Project specific classes and class attributes

The 3D city database may contain some classes for representation of project specific metadata, version control and
attributes for representation of additional project specific information. Since this information is represented in the
CityGML specification differently or even not at all, appropriate classes and class attributes are added or respectively
adopted.

2.5.1.6 Simplified design of GML geometry classes

Spatial properties of features are represented by objects of GML3’s geometry model based on the ISO 19107 standard
Spatial Schema [Herr2001], representing 3D geometry according to the well-known Boundary Representation (B-
Rep, cf. [FVFH1995]). Actually only a subset of the GML3 geometry package is used. Moreover, for 2D and 3D
surface-based geometry types a simpler but equally powerful model is used: These geometries are stored as polygons,
which are aggregated to MultiSurfaces, CompositeSurfaces, TriangulatedSurfaces, Solids, MultiSolids, as well as
CompositeSolids.

2.6 UML class diagram

The following pages cite several parts of the CityGML specification [GKNH2012] which are necessary for a better
understanding. Main focus is put on explaining the customization and the differences to the CityGML standard.

Design decisions in the model are explicitly visualised within the UML diagrams. Following models are presented in
detail:

2.6.1 Geometric-topological Model

The geometry model of CityGML consists of primitives, which may be combined to form complexes, composite
geometries or aggregates. A zero-dimensional object is modelled as a Point, a one-dimensional as a _Curve. A curve
is restricted to be a straight line, thus only the GML3 class LineString is used.

Combined geometries can be aggregates, complexes or composites of primitives (see illustration in Fig. 2.1). In an
Aggregate, the spatial relationship between components is not restricted. They may be disjoint, overlapping, touching,
or disconnected. GML3 provides a special aggregate for each dimension, a MultiPoint, a MultiCurve, a MultiSurface
or a MultiSolid. In contrast to aggregates, a Complex is topologically structured: its parts must be disjoint, must
not overlap and are allowed to touch, at most, at their boundaries or share parts of their boundaries. A Composite is a
special complex provided by GML3. It can only contain elements of the same dimension. Its elements must be disjoint
as well, but they must be topologically connected along their boundaries. A Composite can be a CompositeSolid, a
CompositeSurface, or CompositeCurve.

The modelling of two-dimensional and three-dimensional geometry types is handled in a simplified way. All surface-
based geometries are stored as polygons, which are aggregated to MultiSurfaces, CompositeSurfaces, TriangulatedSur-
faces, Solids, MultiSolids, as well as CompositeSolids accordingly. This simplification substitutes the more complex
representation used for those GML geometry classes in grey blocks in Fig. 2.2. Mapping the UML diagram to the
relational schema now requires only one table (SURFACE_GEOMETRY), which is explained in Section 2.7.3.3.

30 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

MultiSurface GeometricComplex CompositeSurface

Fig. 2.1: Different types of aggregated geometries [GKNH2012]

In order to implement topology, CityGML uses the XML concept of XLinks provided by GML. Each geometry object
that should be shared by different geometric aggregates or different thematic features is assigned a unique identifier,
which may be referenced by a GML geometry property using a href attribute. The XLink topology is simple and
flexible and nearly as powerful as the explicit GML3 topology model. However, a disadvantage of the XLink topology
is that navigation between topologically connected objects can only be performed in one direction (from an aggregate
to its components), not (immediately) bidirectional, as it is the case for GML’s built-in topology.

2.6.2 Implicit Geometry

The concept of implicit geometries is an enhancement of the GML3 geometry model.

An implicit geometry is a geometric object, where the shape is stored only once as a prototypical geometry, for example
a tree or other vegetation objects, a traffic light or traffic sign. This prototypic geometry object is re-used or referenced
many times, wherever the corresponding feature occurs in the 3D city model. Each occurrence is represented by a link
to the prototypic shape geometry (in a local Cartesian coordinate system), by a transformation matrix that is multiplied
with each 3D coordinate of the prototype, and by an anchor point denoting the base point of the object in the world
coordinate reference system. The concept of implicit geometries is similar to the well-known concept of primitive
instancing used for the representation of scene graphs in the field of computer graphics [FVFH1995].

Implicit geometries may be applied to features from different thematic fields in order to geometrically represent the
features within a specific level of detail (LOD). Thus, each CityGML thematic extension module (like Building,
Bridge, and Tunnel etc.) may define spatial properties providing implicit geometries for its thematic classes.

The shape of an implicit geometry can be represented in an external file with a proprietary format, e.g. a VRML file,
a DXF file, or a 3D Studio MAX file. The reference to the implicit geometry can be specified by an URI pointing to
a local or remote file, or even to an appropriate web service. Alternatively, a GML3 geometry object can define the
shape. This has the advantage that it can be stored or exchanged inline within the CityGML dataset. Typically, the
shape of the geometry is defined in a local coordinate system where the origin lies within or near to the object’s extent.
If the shape is referenced by an URI, also the MIME type of the denoted object has to be specified (e.g. “model/vrml”
for VRML models or “model/x3d+xml” for X3D models).

The implicit representation of 3D object geometry has some advantages compared to the explicit modelling, which
represents the objects using absolute world coordinates. It is more space-efficient, and thus more extensive scenes
can be stored or handled by a system. The visualization is accelerated since 3D graphics hardware supports the scene
graph concept. Furthermore, the usage of different shape versions of objects is facilitated, e.g. different seasons, since
only the library objects have to be exchanged.

2.6. UML class diagram 31

3D City Database for CityGML, Release 4.1

<<Geometry>>
gmi::_Geometry

7

<<Geometry>>
gml::_GeometricPrimitive
interior 0-7 <G ry>>
<<Geometry>> <<Geometry>> eame.ry
gml::_Solid] gml::_Surface 1r <<Geometry>> gmi::Point
solidMember exterior . gmi::_Curve +position : gmi::DirectPosition [1]
1 surfaceMember 1+ 75 0.2 baseSurface curveMember
0..1 0..1
<<Geometry>> <<Geometry>> <<Geometry>> <<Geometry>>
gml::CompositeSolid gml::Solid gml::CompositeCurve gml::LineString
. 1 +position : gml::DirectPosition [2..%]
<<Geometry>> <<Geometry>> <<Geometry>> <<Geometry>>
gml::CompositeSurface gml::Surface gml::Polygon gml::OrientableSurface
% : T +orientation : gml::SignType [0..1]
‘ 1.0 FEEILE exterior !
<<Geometry>> <<Geometry>> <<Geometry>>
gml::TriangulatedSurface 1 gml::_SurfacePatch gml::_Ring
H interior =
trianglePatches
exterior 1
<<Geomelry>> " "
gmi:TIN <<Geometry>> <<Geometry=> exterior 74
+stopLines : gml::LineStringSegment [0..7] gml::Triangle gml::Rectangle
+breakLines : gml::LineStringSegment [0..7] =<Geometry>>
+maxLength : gml::LengthType [1] * gmi:LinearRing
+controlPoint : gml::posList [1] +position : gml::DirectPosition [4..*]

gml geometry classes containend in the gray box above a simplified to following structure:

<<Geometry>>
_BRepGeometry
+isXLink : boolean [1]
bRepMember |+jsReverse : boolean [1]
-isSolid : boolean [1]
+isComposite : boolean [1]
+isTriangulated : boolean [1]

L

0.1
| <<Geomelry>>
<<Geometry>> Polygon
BRepAggregate +geometry : SDO_GEOMETRY [1]

The whole generalisation relation is realised in the database as one table named SURFACE_GEOMETRY

Fig. 2.2: Geometrical-topographical model. For simplification the geometry classes in the grey block are substituted
by the construct in the orange block

<<Object>> referencePoint <<Geometry>>
ImplicitGeometry m gml::Point <<PrimitveType>>
TransformationMatrix4x4Type

+gml::doubleList[16]

+mimeType : gml::CodeType

+transformationMatrix : TransformationMatrixdx4Type
+libraryObject : xs::anyURI <<Geometry>>
gml::_Geometry

relativeGMLGeometry

Fig. 2.3: Implicit Geometry model

32 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

2.6.3 Appearance Model

Information about a surface’s appearance, i.e. observable properties of the surface, is considered an integral part of
virtual 3D city models in addition to semantics and geometry. Appearance relates to any surface-based theme, e.g.
infrared radiation or noise pollution, not just visual properties and can be represented by — among others — textures
and georeferenced textures. Appearances are supported for an arbitrary number of themes per city model. Each
LoD of a feature can have individual appearances. Each city object or city model respectively may store its own
appearance data. Therefore, the base CityGML classes _CityObject and CityModel contain a relation appearance and
appearanceMember respectively.

Themes are represented by an identifier only. The appearance of a city model for a given theme is defined by a set
of objects of class Appearance, referencing this theme through the attribute theme. All appearance objects belonging
to the same theme compose a virtual group. An Appearance object collects surface data relevant for a specific theme
through the relation surfaceDataMember. Surface data is represented by objects of the abstract class _SurfaceData.
Its only attribute is the Boolean flag isFront, which determines the side (front and back face of the surface) a surface
data object applies to.

A constant surface property is modelled as material. A surface property, which depends on the location within the
surface, is modelled as texture. Each surface object can have both a material and a texture per theme and side. This
allows for providing both a constant approximation and a complex measurement of a surface’s property simultaneously.
If a surface object is to receive multiple textures or materials, each texture or material requires a separate theme. The
mixing of themes or their usage is not explicitly defined but left to the application.

Materials define light reflection properties being constant for a whole surface object. The definition of the class
X3DMaterial is adopted from the X3D and COLLADA specification (cf. X3D, COLLADA specification):

* diffuseColor defines the colour of diffusely reflected light.
* specularColor defines the colour of a directed reflection.
* emissiveColor is the colour of light generated by the surface.

All colours use RGB values with red, green, and blue chanels, each defined as value between 0 and 1. Transparency
is stored separately using the transparency element where 0 stands for fully opaque and 1 for fully transparent. am-
bientIntensity specifies the minimum percentage of diffuseColor that is visible regardless of light sources. shininess
controls the sharpness of the specular highlight. 0 produces a soft glow while 1 results in a sharp highlight. isSmooth
gives a hint for normal interpolation. If this Boolean flag is set to true, vertex normals should be used for shading
(Gouraud shading). Otherwise, normals should be constant for a surface patch (flat shading). Target surfaces are
specified using target elements. Each element contains the URI of one target surface geometry object.

The base class for textures is _AbstractTexture. Here, textures are always raster-based 2D textures. The raster image is
specified by imageURI using a URI and may contain an arbitrary image data resource, even a preformatted request for
a web service. The image data format can be defined using standard MIME types in the mimeType element. Textures
can be qualified by the attribute textureType, differentiating between textures, which are specific for a certain object
(specific) and prototypic textures being typical for that object surface (¢typical). Textures may also be classified as
unknown. The specification of texture wrapping is adopted from the COLLADA standard. Possible values of the
attribute wrapMode are none, wrap, mirror, clamp and border.

_AbstractTexture is further specialised according to the texture parameterisation, i.e. the mapping function from a
location on the surface to a location in the texture image. Texture parameterisation uses the notion of texture space,
where the texture image always occupies of the region [0,1]? regardless of the actual image size or aspect ratio. The
lower left image corner is located at the origin. To receive textures, the mapping function must be known for each
surface object.

The class GeoreferencedTexture describes a texture that uses a planimetric projection. Such a texture has a unique
mapping function which is usually provided with the image file (e.g. georeferenced TIFF) or as a separate ESRI world
file. The search order for an external georeference is determined by the Boolean flag preferWorldFile. Alternatively,
inline specification of a georeference similar to a world file is possible. This internal georeference specification always
takes precedence over any external georeference. referencePoint defines the location of the centre of the upper left

2.6. UML class diagram 33

3D City Database for CityGML, Release 4.1

<<Feature>>
gmi::_Feature

A

<<Feature>>
gmi::_FeatureCollection

1

<<Feature>> <<Feature>>
core: :CityModel core::_CityObject
: <<Feature>>)
appearanceMember Appearance appearance
+theme : xs::string [0..1]
<=Fealure>>
SurfaceData surfaceDataMember
+isFront : xs::boolean [0..1] = true
=<Feature=> ==Feature>>
X3DMaterial _ Texture

+ambientintensity : core::doubleBetweenland1 [0..1]
+diffuseColor : Color [0..1]

+emissiveColor : Color [0..1]

+specularColor : Color [0..1]

+shininess : core::doubleBetweenDand1 [0..1]
+transparency : core::doubleBetweenOand1 [0..1]
+isSmooth : xs:boolean [0..1]

+arget : xs::anyURI[D.."]

+imageURI : xs::anyURI [1]

+mimeType : gml::CodeType [0..1]
+iexture Type : TextureTypeType [0..1]

Turaphods - WiapMoteType [0-1T —

+borderColor : ColorPlusOpacity [0..1]

-~
This part will be stored 1
in a single table

el L L

T

target

<=Fealure>>
ParameterizedTexture

<<Feature>>
GeoreferencedTexture

<<0Object>>

TextureAssociation

+larget

+preferWorldFile : xs::boolean [0..1] = true
+orientation : core:TransformationMatrix2x2Type [0..1]

cxstanyURI0.*)

+uri @ xs::anyURI [1]

<<Object>>
_ TextureParameterization

7

referencePoint <<Geometry=>

gml::Point

<<0Object>>
TexCoordGen

<<0Object>>
TexCoordList

+worldToTexture : core:TransformationMatrix3x4Type [1]

+textureCoordinates : gml::doubleList [1..%]
+ring : xs:anyURI [1.%]

Fig. 2.4: Appearance model

34

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

image pixel in world space and corresponds to values 5 and 6 in an ESRI world file. Since GeoreferencedTexture uses
a planimetric projection, referencePoint is two-dimensional and the orientation defines the rotation and scaling of the
image in form of a 2x2 matrix (a list of 4 doubles in row-major order corresponding to values 1, 3, 2, and 4 in an
ESRI world file). The CRS of this transformation is identical to the referencePoint’s CRS. If neither an internal nor an
external georeference is given, the GeoreferencedTexture is invalid. Target surfaces are specified using target elements.
Each element contains the URI of one target surface geometry object. All target surface objects share the mapping
function defined by the georeference.

The class ParameterizedTexture describes a texture with a target-dependent mapping function. Each target surface
geometry object is specified as URI in the uri attribute of a separate farget element. The mapping is defined by
associated classes of _TextureParameterization:

» TexCoordList for the concept of texture coordinates, defining an explicit mapping of a surface’s boundary points
to points in texture space, and

* TexCoordGen when using a common 3x4 transformation matrix from world space to texture space, specified by
the attribute worldToTexture.

2.6.4 Thematic model

The thematic model consists of the class definitions for the most important types of objects within virtual 3D city
models. Most thematic classes are (transitively) derived from the basic classes Feature and FeatureCollection, the
basic notions defined in ISO 19109 and GML3 for the representation of features and their aggregations. Features
contain spatial as well as non-spatial attributes, which are mapped to GML3 feature properties with corresponding
data types. Geometric properties are represented as associations to the geometry classes described in Section 2.6.1
The thematic model also comprises different types of interrelationships between Feature classes like aggregations,
generalizations, and associations.

The aim of the explicit modelling is to reach a high degree of semantic interoperability between different applications.
By specifying the thematic concepts and their semantics along with their mapping to UML and GML3, different
applications can rely on a well-defined set of Feature types, attributes, and data types with a standardised meaning or
interpretation. In order to allow also for the exchange of objects and/or attributes that are not explicitly modelled in
CityGML, the concepts of GenericCityObjects and GenericAttributes have been introduced.

2.6.4.1 Core Model

The base class of all thematic classes within CityGML’s data model is the abstract class _CityObject. _CityObject
provides a creation and a termination date for the management of histories of features as well as generic attributes and
external references to corresponding objects in other data sets. _CityObject is a subclass of the GML class Feature,
thus it may inherit multiple names from Feature, which may be optionally qualified by a codeSpace. This enables
the differentiation between, for example, an official name from a popular name or names in different languages. The
generalisation property generalizesTo of _CityObject may be used to relate features, which represent the same real-
world object in different LoD, i.e. a feature and its generalized counterpart(s). The direction of this relation is from
the feature to the corresponding generalised feature.

Features of _CityObject and its specialized subclasses may be aggregated to a CityModel, which is a feature collec-
tion with optional metadata. Generally, each feature has the attributes class, function, and usage, unless it is stated
otherwise. The class attribute can occur only once, while the attributes usage and function can be used multiple
times. The class attribute describes the classification of the objects, e.g. road, track, railway, or square. The attribute
function contains the purpose of the object, like national highway or county road, while the attribute usage defines
whether an object is e.g. navigable or usable for pedestrians. The attributes class, function and usage are specified
as gml:CodeType. The values of these properties can be enumerated in code lists. Furthermore, for each feature the
geographical extent can be defined using the Envelope element. Minimum and maximum coordinate values have to be
assigned to opposite corners of the feature’s bounding box.

2.6. UML class diagram 35

3D City Database for CityGML, Release 4.1

<<Geometry>>
gmi::Evelope

0.1 envelope

1

<<Feature>>
gmi::_Feature
+name : gml:CodeType [0..%] <<Fealure>>
CityObjectGroup
4L +class : gml::CodeType [0..1] - geomet <<Geometry>>
[+function : gml::CodeType [0..7] 0.1 gml:: _Geometry
+usage : gml::CodeType [0.."]
<<Feature>>
gmi::_FeatureCollection
[l}‘ ________ Role
<<Fealure>> %E"‘rfm groupMember +role : xs::string [1]
CityModel 0.*
<<Feature>> "
* CityObject ‘1 <<DataType>>
. |*creationDate : xs::date [0..1] extemalReference ExternalReference
*teminationDate . xs:date: [0..1] - +informationSystem : xs::anyURI [0..1]
cityObjectMember |+relativeToTerrain : RelativeToTerrainType [0..1]
+relativeToWater : RelativeToWaterType [0..1] generalizesTo 1

L

externalObject 1

} <<Union>>

<<Feature>> <<Feature>> <<Feature>> <<Feature>> <<Feature>> ExternalObjectReference
dem:: ReliefFeature luse::LandUse veg::_VegetationObject fn::CityFurniture wir::_WaterObject +name : xs::string [1]
+uri : xszanyURI [1]
<<Feature>> <<Feature>> <<Fealture>>
gen::GenericCityObject _Site tran::_TransportationObjcet
[|]
<<Feature>> <<Feature>> <<Feature>>
bldg::_AbstractBuilding tun::_AbstractTunnel brdg::_AbstractBridge

Fig. 2.5: Core Model and thematic top level classes

36 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

The subclasses of _CityObject comprise the different thematic fields of a city model, in the following covered by
separate thematic models: building model (_AbstractBuilding), tunnel model (_AbstractTunnel), bridge model (_Ab-
stractBridge), city furniture model (CiyFurniture), digital terrain model (ReliefFeature), land use model (LandUse),
transportation model (TransportationObject), vegetation model (_VegetationObject), water bodies model (_WaterOb-
Jject) and generic city object model (GenericCityObject). The latter one allows for the modelling of features, which are
not explicitly covered by one of the other models. The separation into these models strongly correlates with CityGML’s
extension modules, each defining a respective part of a virtual 3D city model.

3D objects are often derived from or have relations to objects in other databases or data sets. For example, a 3D
building model may have been constructed from a two-dimensional footprint in a cadastre data set. The reference
of a 3D object to its corresponding object in an external data set is essential, if an update must be propagated or if
additional data is required (like the name and address of a building’s owner in a cadastral information system). In order
to supply such information, each _CityObject may have External References to corresponding objects in external data
sets. Such a reference denotes the external information system and the unique identifier of the object in this system.

CityObjectGroups aggregate CityObjects and furthermore are defined as special CityObjects. This implies that a group
may become a member of another group realizing a recursive aggregation schema. Since CityObjectGroup is a feature,
it has the optional attributes class, function and usage. The class attribute allows a group classification with respect
to the stated function and may occur only once. The function attribute is intended to express the main purpose of a
group, possibly to which thematic area it belongs (e.g. site, building, transportation, architecture, unknown etc.). The
attribute usage can be used, if the object’s usage differs from its function. The attributes class, function and usage are
specified as gml:CodeType. The values of these properties can be enumerated in code lists.

Each member of a group may be qualified by a role name, reflecting the role each CityObject plays in the context of
the group. Furthermore, a CityObjectGroup can optionally be assigned an arbitrary geometry object. This may be
used to represent a generalised geometry generated from the member’s geometries. The parent association linking a
CityObjectGroup to a CityObject allows for the modelling of generic hierarchical groupings. This concept is used, for
example, to represent storeys in buildings. See Fig. 2.5 for the simplified UML diagram.

2.6.4.2 Building model

Buildings can be represented in five levels of detail (LoDO to LoD4). The building model allows the representation of
simple buildings that consist of only one component, as well as the representation of complex relations between parts
of a building, e.g. a building consisting of three parts — a main house, a garage and an extension. The parts can again
consist of parts etc. The subclasses Building and BuildingPart of _AbstractBuilding enable these modelling options.

m
Building with two ki
building parts St -4
(repreSn?nt;d * Building consist-
one Building ing of oo part
feature and one
included Build- (represented as

one Building

ingPart fi
ingPart feature) feature)

Fig. 2.6: Example of buildings consisting of one and two building parts [GKCN2008]

2.6. UML class diagram 37

3D City Database for CityGML, Release 4.1

In the case of a simple, one-piece house there is only one Building which inherits all attributes and relations from
_AbstractBuilding (cf. Fig. 2.6). However, such a Building can also comprise BuildingParts which likewise inherit all
properties from _AbstractBuilding: the building’s class, function (e.g. residential, public, or industry), usage, year of
construction, year of demolition, roof type, measured height, and the number and individual heights of all its storeys
above and below ground (cf. Fig. 2.7).

Furthermore, Addresses can be assigned to Buildings or BuildingParts. In particular, BuildingParts may again com-
prise BuildingParts as components, because the composition relation is inherited. This way a tree-like hierarchy can
be created whose root object is a Building and whose non-root nodes are BuildingParts. The attribute values are gen-
erally filled in the lower hierarchy level, because basically every part can have its own construction year and function.
However, the function can also be defined in the root of the hierarchy and therefore span the whole building. The
individual BuildingParts within a Building must not penetrate each other and must form a coherent object.

The geometric representation of an _AbstractBuilding is successively refined from LODO to LOD4. Therefore, a single
building can have multiple spatial representations in different levels of detail at the same time by Solid, MultiSurface,
and/or MultiCurve (cf. Fig. 2.7).

In LoDO, the building can be represented by horizontal, 3-dimentional surfaces describing the footprint and the roof
edge. In LoD1, a building model consists of a geometric representation of the building volume. Optionally, a Multi-
Curve representing the TerrainintersectionCurve can be specified. This geometric representation is refined in LoD2
by additional MultiSurface and MultiCurve geometries, used for modelling architectural details like a roof overhang,
columns, or antennas. In LoD2 and higher LoDs the outer facade of a building can also be differentiated semantically
by the classes _BoundarySurface and Buildinglnstallation. A _BoundarySurface is a part of the building’s exterior
shell with a special function like wall (WallSurface), roof (RoofSurface), ground plate (GroundSurface), or closing
surface (ClosureSurface) as shown in Fig. 2.8. Closure surfaces can be used to virtually seal open buildings as for
example hangars, allowing e.g. volume calculation. The Buildinglnstallation class is used for building elements like
balconies, chimneys, dormers, or outer stairs, strongly affecting the outer appearance of a building. A BuildinglInstal-
lation is used for the representation of chimneys, stairs, balconies etc. and optionally has the attributes class, function,
and usage.

In LoD3, the openings in _BoundarySurface objects (doors and windows) can be represented as thematic objects. In
LoD4, the highest level of resolution, also the interior of a building, composed of several rooms, is represented in
the building model by the class Room. The aggregation of rooms according to arbitrary, user-defined criteria (e.g.
for defining the rooms corresponding to a certain storey) is achieved by employing the general grouping concept
provided by CityGML. Interior installations of a building, i.e. objects within a building which (in contrast to furniture)
cannot be moved, are represented by the class IntBuildinglnstallation. If an installation is attached to a specific room
(e.g. radiators or lamps), they are associated with the Room class, otherwise (e.g. in case of rafters or pipes) with
_AbstractBuilding. A Room may have the attributes class, function, and usage referenced to external code lists. The
class attribute allows a classification of rooms with respect to the stated function, e.g. commercial or private rooms,
and occurs only once. The function attribute is intended to express the main purpose of the room, e.g. living room,
kitchen. The attribute usage can be used if the object’s usage differs from its function. Both attributes can occur
multiple times.

The visible surface of a room is represented geometrically as a Solid or MultiSurface. Semantically, the surface
can be structured into specialised _BoundarySurfaces, representing floor (FloorSurface), ceiling (CeilingSurface),
and interior walls (InteriorWallSurface) (cf. Fig. 2.8). Room furniture, like tables and chairs, can be represented in
the CityGML building model with the class BuildingFurniture. A BuildingFurniture may have the attributes class,
function, and usage.

2.6.4.3 Bridge Model

The bridge model was developed in analogy to the building model (cf. Section 2.6.4.2) with regard to structure and
attributes [GKCN2008]. The bridge model allows for the representation of the thematic, spatial and visual aspects
of bridges and bridge parts in four levels of detail, LOD 1 — 4. A (movable or unmovable) bridge can consist of
multiple BridgeParts. Like Bridge, BridgePart is a subclass of _AbstractBridge and hence, has the same attributes and
relations. The relation consistOfBridgePart represents the aggregation hierarchy between a Bridge (or a BridgePart)

38 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

0.1

lod3ImplicitReprese ntation

IoddlmEIic'rtRcErcscntation
<<Object>> 0.1
jod4ImolicitReoresentation 0..1 > core::ImplicitGeometry lod2ImplicitRepresentation
lod3ImplicitRepresentation

0.1
Representation lod4ImolicitRenresentation

lod4Geometry 0] 0.1 |y d2Geometry) <<Feature>>
<<Geometry==> | Bulldingl llation
b4 G ity | gml::_ 'V lod3Geometry *|+class : gml:CodeType [0..1] -
0.1 lod4Geometry « [#function : gml::CodeType [0..%] <>
+usage : gml::CodeType [0..%]

* /houterBuildingInstallation

<<Feature>> <>
+class | gml:CodeType [0..1] * « | col ddress -
« |+function : gml::CodeType [0.*] X <>' .
+usage : gml::CodeType [0.."] T
_AbstractBullding

roominstallation u +class : gml:CodeType [0..1]

+function : gmil::CodeType [0.."]
+usage : gml::CodeType [0..%]
+yearOfConstruction : xs::gYear [0..1]
. <<Feature>= +yearOfDemaolition : xs::gYear [0..1] ot
BuildingFurniture +roofType : gml:CodeType [0..1] >
+measuredHeight : gml:LengthType [0..1]
+storeysAboveGround @ xs::nonNegativelnteger [0..1]
+storeysBelowGround : xs::nonNegativeInteger [0..1]

lass : gmi:CodeType [0..1]
+function : gmil::CodeType [0.."]
+usage . gml:CodeType [0..%]

+storeyHeights AboveGround : gmi: :MeasureOrNullListType [0..1] .
. i lariorFavifire +storeyHeights BelowGround : gmi::Me asureOmMullListType [0..1] :
0.1
<<Feature=> <<Feature>> <<Faaturg>>
Room Bullding BuildingPart
+class : gml:CodeType [0..1] = consistsOfB uilding P art]
function : gml::CodeType [0..%] interiorRoom
+usage : gml::CodeType [0..%]
lod1Saolid lod1MultiSurface lod1 Temrainintersection
0.1 <> 1T lod25olid lod2MultiSurface lod2Temrainintersection
lod3solid lod3MultBurface | [P90FootPrint | iy yaTarainintersection
01 logasolid lod4MultiSurface | ;' lod4Temainintersection
lod2MultiCurve
lod4Salid << Geometry=> <<Geometry==> —
lod3MultiC:
01 gmi::_Solid gml::Multi Surface uitibune
- lod4MultiCurve
0 1/|\ 0.1 01 Wo.1 0.1
5 5 lod4MultiSurface B <<Gaometry>>
N <<Feature>> N . -
_Opening = lod3MultiSurface lod3MultiSurface gml:MultiCurve
- loddMultiSurface lod4MultiSurface
<<Feature>> <<Feature>> boundedBy . ol * boundedBy
Door Window <> <<Feature>> - boundedBy
* 0.2
_BoundarySurface “boundedBy
[I I I 1 I 1
<<Feature>> <<Feature>> =<Feature>> <<Feature>> <<Feature>> <<Feature>> <<Feature>>
RoofSurface WallSurfacee GroundSurface ClosureSurface CellingSurface Inte riorWall Surface FloorSurface

<<Feature>> <<Feature>>
OuterCellingSurface OuterFloorSurface

Fig. 2.7: UML diagram of Building model

2.6. UML class diagram 39

3D City Database for CityGML, Release 4.1

Roof surface

Exterior Shell

Wall \
surface A0
Ceiling Wall / S InteriorWall
surface Room Surface Surface
/,,
; {
Opening InteriorWall | [
(Window) Surface :
i
1
4 I
Opening \)
Floor surface (Door) ! Opening
. Door

Ground surface

Fig. 2.8: Boundary surfaces

and it’s BridgeParts. By this means, an aggregation hierarchy of arbitrary depth can be modelled. The semantic
attributes of an _AbstractBridge are class, function, usage and is_movable. The attribute class is used to classify
bridges, e.g. to distinguish different construction types (cf. Fig. 2.9). The attribute function allows representing the
utilization of the bridge independently of the construction. Possible values may be railway bridge, roadway bridge,
pedestrian bridge, aqueduct, etc. The option to denote a usage which is divergent to one of the primary functions of
the bridge (function) is given by the attribute usage. Each Bridge or BridgePart feature may be assigned zero or more
addresses using the address property.

BridgePart

y

BridgeConstructionElement

BridgePart

y

BridgePart

|

BridgeConstructionElement

Bridge

Fig. 2.9: Example of bridge consisting of bridge parts

The spatial properties are defined by a solid for each of the four LODs (relations lodISolid to lod4Solid). In analogy
to the building model, the semantical as well as the geometrical richness increases from LODI (blocks model) to
LOD3 (architectural model). Interior structures like rooms are dedicated to LOD4. To cover the case of bridge
models where the topology does not satisfy the properties of a solid (essentially water tightness), a multi-surface
representation is allowed (lod1MultiSurface to lod4MultiSurface). The line where the bridge touches the terrain surface
is represented by a terrain intersection curve, which is provided for each LOD (relations lod!Terrainintersection to
lod4TerrainIntersection). In addition to the solid representation of a bridge, linear characteristics like ropes or antennas
can be specified geometrically by the lod1MultiCurve to lod4MultiCurve relations.

The thematic boundary surfaces of a bridge are defined in analogy to the building module. _BoundarySurface is the ab-
stract base class for several thematic classes, structuring the exterior shell of a bridge as well as the visible surfaces of
rooms, bridge construction elements and both outer and interior bridge installations. From _BoundarySurface, the the-

40 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

matic classes RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface, ClosureSurface,
FloorSurface, InteriorWallSurface, and CeilingSurface are derived.

RoofSurface

Window

WallSurface

OuterFloorSurface

OuterCeilingSurface

Fig. 2.10: Different BoundarySurfaces of a bridge

Bridge elements which do not have the size, significance or meaning of a BridgePart can be modelled either as
BridgeConstructionElement or as Bridgelnstallation. Elements which are essential from a structural point of view are
modelled as BridgeConstructionElement, for example structural elements like pylons, anchorages etc. (cf. Fig. 2.9
and Fig. 2.11). A general classification as well as the intended and actual function of the construction element are
represented by the attributes class, function, and usage. The visible surfaces of a bridge construction element can be
semantically classified using the concept of boundary surfaces representing floor (FloorSurface), ceiling (CeilingSur-
face), and interior walls (InteriorWallSurface) (cf. Fig. 2.10). Whereas a BridgeConstructionElement has structural
relevance, a Bridgelnstallation represents an element of the bridge which can be eliminated without collapsing of
the bridge (e.g. stairway, antenna, and railing) (cf. Fig. 2.11). Bridgelnstallations occur in LOD 2 to 4. The class
Bridgelnstallation contains the semantic attributes class, function and usage. The attribute class gives a classification
of installations of a bridge. With the attributes function and usage, nominal and real functions of the bridge installation
can be described.

In LOD3 and LOD4, a _BoundarySurface may contain _Openings like doors and windows. The classes BridgeRoom,
IntBridgelnstallation and BridgeFurniture allow for the representation of the bridge interior. They are designed in
analogy to the classes Room, IntBuildingInstallation and BuildingFurniture of the building module and share the same
meaning. The bridge interior can only be modelled in LOD4.

2.6.4.4 CityFurniture Model

City furniture objects are immovable objects like lanterns, traffic lights, traffic signs, flower buckets, advertising
columns, benches, delimitation stakes, or bus stops. The class CityFurniture may have the attributes class, function
and usage (cf. UML-diagram in Fig. 2.13). Their possible values are explained in detail in the CityGML specification.
The class attribute allows an object classification like traffic light, traffic sign, delimitation stake, or garbage can, and
can occur only once. The function attribute describes, to which thematic area the city furniture object belongs to (e.g.
transportation, traffic regulation, architecture etc.), and can occur multiple times. The attribute usage denotes the real
purpose of the city object, and can occur multiple times as well.

2.6. UML class diagram 41

3D City Database for CityGML, Release 4.1

BridgeConstructionElement

Bridgelnstallation

W

f

BridgePart

Y

Bridge
Fig. 2.11: Example of bridge consisting of BridgeConstructionElement and Bridgelnstallation

Since CityFurniture is a subclass of CityObject and hence is a feature, it inherits the attribute gml:name. As with any
CityObject, CityFurniture objects may be assigned ExternalReferences and GenericAttributes. For ExternalReferences
city furniture objects can have links to external thematic databases. Thereby, semantical information of the objects,
which cannot be modelled in CityGML, can be transmitted and used in the 3D city model for further processing, for
example information from systems of power lines or pipelines, traffic sign cadastre, or water resources for disaster
management.

City furniture objects can be represented in city models with their specific geometry, but in most cases the same kind of
object has an identical geometry. The geometry of CityFurniture objects in LoD 1-4 may be represented by an explicit
geometry (lodXGeometry where X is between 1 and 4) or an ImplicitGeometry object (lodXImplicitRepresentation
with X between 1 and 4). In the concept of ImplicitGeometry the geometry of a prototype city furniture object is
stored only once in a local coordinate system and referenced by a number of features. Spatial information of city
furniture objects can be taken from city maps or from public and private external information systems. In order
to specify the exact intersection of the DTM with the 3D geometry of a city furniture object, the latter can have a
TerrainlntersectionCurve (TIC) for each LoD. This allows for ensuring a smooth transition between the DTM and the
city furniture object.

2.6.4.5 Generic Objects and Attributes

The concept of generic objects and attributes has been introduced to facilitate the storage and exchange of 3D objects,
which are not covered by explicitly modelled classes within CityGML or which requires additional attributes. These
generic extensions are realised by the class GenericCityObject and the data type genericAttribute (cf. Fig. 2.14).

A GenericCityObject may have the attributes class, function, and usage are specified as gml:CodeType. The class
attribute allows an object classification within the thematic area such as bridge, tunnel, pipe, power line, dam, or
unknown. The function attribute describes to which thematic area the GenericCityObject belongs (e.g. site, trans-
portation, architecture, energy supply, water supply, unknown etc.). The attribute usage can be used, if the object’s
usage differs from its function. Each _CityObject and all thematic subclasses can have an arbitrary number of gener-
icAttributes. Data types may be String, Integer, Double (floating point number), URI (Unified Resource Identifier),

42 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

<<Feature

<<Feature

ityObject

lnd?ImnlicitRenresantatinn

cora::_Site

<<Feature>>

lation

I : gml:CodeType [0..1]

lass : gmi:CodeType [0..1]
+function : gml::CodeType [0..%]
+usage : gml:CodeType [0..%]

S

lndlImnlicitRenresantatinn * |+function : gmi::CodeType [0..7] <>
lod3ImplicitRepresentation 21 TS 0-1| jod4implicitRepresentation _+ |*usage : gmi:CodeType [0.7] *outerBridgeInstallation
lod4implicitReprese ntation core::ImplicitGeometry T-1-
lod1ImplicitRepresentation
loddimplicitRepresentation”! lod2ImplicitRepresentation
IncdimnlicitRenmsa ntatinn-1 lod3ImplicitRepresentation
lod4implicitRepresentation
0.1
lod2Geometry
0.1 [a3cearan
lnddGan mﬂ?n.l1 << Geometry=> Y
gmi:_Geomatry lod4Geometry o of o]+
lod4Geometry lod1Geometry - ==Featurg>>
01 0.1 | led2Geometry . BridgeConstructionElement
- - e —— | +class : gmi:CodeType [0..1] * lod1Temainintersection
o function : gmi::CodeType [0.%] & lod2Temainintersection
e HIESEIR BT - ked3Temainintersection
<<Feature>> O O - lod4Termrainintersection
IntBridgel llation outerBridgeConstruction Q

bridge R

.~ interiorBridgelnstallation é

address

<<Featura>> address

O |.

core::Address .

<<Feature>>
BridgeFurniture

*|+class . gml:CodeType [0..1]
+function : gmil::CodeType [0.."]
+usage : gml:CodeType [0..°]

0.1

interiorFurniture

<<Feature>>
BridgeRoom

+class : gml:CodeType [0..1]

+function : gml::CodeType [0..%]
+usage : gml:CodeType [0.7]

intedorBridgeRoom

<<Feature>>
_AbstractBridge

+class | gml::CodeType [0..1]
+function : gmil::CodeType [0.7]
+usage @ gml:CodeType [0..%]
+yearOfConstruction : xs:gYear [0..1]
+yearOfDemaolition : xs::gYear [0..1]
+isMovable : xs:boolean [0..1]

Bridge

<<Feature>>

<<Feature>>
BridgePart

3

consists OfBridgePart

<<Feature>>

.

Ined1 Snlid lod1MultiSurface lod1Temrainlntersection lod2MultiCurve
0.1 <> == lod2Solid led2MultiSurface lod2Temainintersection lod3MultiCurve
lod3Solid lod3MultiSurface lod3TemainIntersection lod4MultiCurve
0.1 | ted4solid lodaMultiSurface [y q lod4Temainintersection a1
- 0.1 0.1 /
lod4Solid <<= Geometry==> <<= Geometry==> <<Geometry=>
gml:_Solid gml:MultiSurface gml:Multi Curve

0.1

0.1 0.1

loaamulisurace

lod2MultiSurface

_Opening

e +" opening

=<Feature>>

Door

lod3MultiSurface lod3MultiSurface

loddMultiSurface lod4MultiSurface
==Feature>> b dedBv <<Feaature b dedBy
Wind. <> _BoundarySurface ~-boundedBy
0.2 < boundedBy
bound edBv

Ay B

<<Feature

RoofSurface

<<Feature

WallSurfacee

<<Feature

ClosureSurface

<< Feature

GroundSurface

=< Featura>>
Caoili

face

InteriorWall Surface

<<Feature>> <<Feature>>
FloorSurface

<<Featura>>
OuterCeilingSurface

<

OuterFloorSurface

Feature>>

Fig. 2.12: UML diagram of bridge model

2.6. UML class diagram

43

3D City Database for CityGML, Release 4.1

<<Feature>>
core::_CityObject
lod1Geometry - Zﬁ * lod1Terrainintersection
<<Feature>>
lod2Geometry * CityFurniture * lod2TerrainIntersection
Geometry>>
<<Geometry>> +class : gml::CodeType [0..1] . . == N
gmi::_Geometry |0.1 B s T +function : gml::CodeType [0.."] lod3Terrainintersection 01| 9ml:MultiCurve
lod4Geometry «|*usage : gml:CodeType [0..%] « lod4Terrainlntersection

w]|

lod 1ImplicitRepresentation

lod2ImplicitRepresentation

<<Object>>
core::ImplicitGeometry

lod3ImplicitRepresentation

lod4implicitRepresentation

Fig. 2.13: City furniture model

Date, and gml:MeasureType. The attribute type is defined by the selection of the particular subclass of _genericAt-
tribute (stringAttribute, intAttribute etc.). In addition, generic attributes can be grouped using the genericAttributeSet
class which is derived from _genericAttribute and thus is also realized as generic attribute. Its value is the set of
contained generic attributes.

The geometry of a GenericCityObject can either be an explicit GML3 geometry or an ImplicitGeometry. In the
case of an explicit geometry, the object can have only one geometry for each LoD, which may be an arbitrary 3D
GML geometry object (class _Geometry, which is the base class of all GML geometries, lodXGeometry, X in O...4).
Absolute coordinates according to the reference system of the city model must be given for the explicit geometry. In
the case of an ImplicitGeometry, a reference point (anchor point) of the object and optionally a transformation matrix
must be given. In order to compute the actual location of the object, the transformation of the local coordinates into
the reference system of the city model must be processed and the anchor point coordinates must be added. The shape
of an ImplicitGeometry can be given as an external resource with a proprietary format, e.g. a VRML or DXF file from
a local file system or an external web service. Alternatively, the shape can be specified as a 3D GML3 geometry with
local Cartesian coordinates using the property relativeGeometry.

In order to specify the exact intersection of the DTM with the 3D geometry of a GenericCityObject, the latter can have
TerrainintersectionCurves for every LoD. This is important for 3D visualization but also for certain applications like
driving simulators. For example, if a city wall (e.g., the Great Wall of China) should be represented as a GenericC-
ityObject, a smooth transition between the DTM and the road on the city wall would have to be ensured (in order to
avoid unrealistic bumps).

2.6.4.6 LandUse Model

LandUse objects describe areas of the earth’s surface dedicated to a specific land use. They can be employed to
represent parcels in 3D. Fig. 2.15 shows the UML diagram of land use objects.

Every LandUse object may have the attributes class (e.g. settlement area, industrial area, farmland etc.), function
(purpose, e.g. cornfield), and usage which can be used, if the way the object is actually used differs from the function.
Since the attributes usage and function may be used multiple times, storing them in only one string requires a single
white space as unique separatorRelational database schema.

44 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

<<Geometry>> <<Feature>> ‘ _genericAttribute <<Dat.aTypuj=>>
gml::MultiCurve core::_CityObject 1 3 gensiicAtinbute
+name : xs:string [1]
0..1 A
; ; 1.7
_genericAttribute <<DataType>>
lod0Terrainintersection « —1 stringAttribute
SARZIES 0.1 +value : xs:string [1]
lod 1Terrainlntersection - GenericCityObject <<DataType>>
Vet et (et s .| ¥class : gmi::CodeType [0.1] genericAttributeSet — <<DataType>>
*function : gml::CodeType [0."] +codeSpace : xs::anyURI [0..1]] intAttribute
lod3TerrainIntersection «|tusage : gml:CodeType [0.."] +value : xs:integer [1]
lod4 Terrainintersection " <<DataType>>
B R R ol A R] doubleAttribute
lodOImplicitRepresentation lod0Geometry +value : xs::double [1]
lod 1ImplicitR tati lod1G
od 1ImplicitRepresentation o eomefry <<DataType>>
lod 2ImplicitRepresentation lod2Geometry dateAttribute
+value : xs::date [1]
lod 3ImplicitRepresentation lod3Geometry
fr 0 <<DataType>>
lod4ImplicitR tat lod4G
od4ImplicitRepresentation o eometry uriAttribute
0.1 B +value : xs:anyURI [1]
<<O?j(?c[>> <<Geometry>> <<DataType>>
core::ImplicitGeometry gmi::_Geometry — measureAttribute
+value : gml::MeasureType [1]

Fig. 2.14: GenericCityObject model

<<Feature==
core::_CityObject

lodOMultiSurface
<<Feature>= .
LandUse lod1MultiSurface
+|::Iass. :gml::CodeType [0..1] 2 od2MultiSurface P..1 <<Geomety>>
+function : gml::CodeType [0..7] -) gml::MultiSurface
+usage : gml:CodeType [0..7] lod3MultiSurface
: lod4MultiSurface

Fig. 2.15: LandUse model

2.6. UML class diagram 45

3D City Database for CityGML, Release 4.1

The LandUse object is defined for all LoD 0-4 and may have different geometries for each LoD. The surface geometry
of a LandUse object is required to have 3D coordinate values. It must be a GML3 MultiSurface, which might be
assigned appearance properties like material (X3DMaterial) and texture (_AbstractTexture and its subclasses).

2.6.4.7 Digital Terrain Model

CityGML includes a very adaptable digital terrain model (DTM) which permits the combination of heterogeneous
DTM types (grid, TIN, break lines, mass points) available in different levels of detail.

A DTM fitting to a certain city model is represented by the class ReliefFeature. This is a CityObject having the
LoD step that fits the DTM as attribute. A relief consists of several ReliefComponents. Each of these components
that are likewise CityObjects also comprises a LoD step. Individual geometrical types of the components are defined
by the four subclasses of ReliefComponent: breaklines, triangular networks (TINs), mass points, and grids (raster).
Geometrically, the corresponding ISO 19107 or GML classes define these types: breaklines by a single MultiCurve,
TINs by TriangulatedSurfaces, mass points by MultiPoint, and raster by RectifiedGridCoverage.

<<Feature>>
core::_CityObject

T

<<Feature>> <<Feature>> . 0.1
ReliefFeature * 1." _ReliefComponent H <<Geometry=>>
+lod : core:integerBetweenOand4 [1] reliefComponent +lod : core:integerBetweenOand4 [1] extent gml::Polygon

<<Feature>> <<Feature>> <<Feature>> <<Feature>>

TINRelief MassPointRelief BreaklineRelief RasterRelief

tin reliefPoints ridgeOrValleyLines | breaklines 1| grid
1 1 0.1 0.1

<<Geometry>> <<Geometry>> <<Geometry=> <<Feature>>

gml::TriangulatedSurface

gml::MultiPoint

gml::MultiCurve

gml::RectifiedGridCoverage

1

<<Geometry=>
gml::Tin

+stopLines : gml:LineStringSegment [0.."]
+breakLines : gml::LineStringSegment [0..*]
+maxLength : gml::LengthType [1]
+controlPoint : gml::posList [1]

Fig. 2.16: UML diagram representing the digital terrain model

A relief can contain ReliefComponents of heterogeneous type and different LoDs. A relief in LoD2, for example, can
contain some LoD3-TIN-ReliefComponents beside a LoD2-Raster-ReliefComponent. In some cases even a LoD1 grid
may exist in some regions of the relief.

In order to geometrically separate the individual components of a grid, which can exist in different LoD, the validity
polygon of a component (extent) is used. This polygon defines the scope in which the component is valid. A grid with
three components is shown in Fig. 2.17. It depicts a coarse raster containing two high-resolution TINs (TIN 1 and 2).
The validity polygon of the raster is represented by the blue line, while the validity polygons of the TINs are bordered
in green and red. In this case, the validity polygon of the raster (grid) has two holes where the raster (grid) is not valid,

46 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

although it does exist. Instead, the high-resolution TINs are used for the representation of the terrain in these regions.
That means the validity polygons of the TINs exactly fit the two holes in the validity polygon of the raster (grid).

Fig. 2.17: A relief, consisting of three components and its validity polygons (from: [PGKS2005])

In the simplest and most frequent case, the validity polygon of a grid corresponds exactly with its Bounding box, i.e.
the spatial extent of the grid.

2.6.4.8 Transportation Model

The transportation model of CityGML is a multi-functional, multi-scale model focusing on thematic and functional as
well as geometrical/topological aspects. Transportation features are represented as a linear network in LoDO0. Starting
from LoD, all transportation features are geometrically described by 3D surfaces.

The main class is TransportationComplex (cf. Fig. 2.19) which represents, for example, a road, a track, a railway, or
a square. It is composed of the parts TrafficArea and AuxiliaryTrafficArea. Fig. 2.18 depicts an example for a LoD2
TransportationComplex configuration within a virtual 3D city model. The Road consists of several TrafficAreas for
the sidewalks, road lanes, parking lots, and of AuxiliaryTrafficAreas below the raised flower beds.

The road itself is represented as a TransportationComplex, which is further subdivided into TrafficAreas and Auxil-
iaryTrafficAreas. The TrafficAreas are those elements, which are important in terms of traffic usage, like car driving
lanes, pedestrian zones and cycle lanes. The AuxiliaryTrafficAreas are describing further elements of the road, like
kerbstones, middle lanes, and green areas.

TransportationComplex objects can be thematically differentiated using the subclasses Track, Road, Railway, and
Square. Every TransportationComplex has the attributes class, function and usage, referencing to the external code
lists. The attribute class describes the classification of the object. The attribute function describes the purpose of the
object like, for example national motorway, country road, or airport, while the attribute usage can be used, if the actual
usage differs from the function.

In addition, both TrafficArea and AuxiliaryTrafficArea may have the attributes class, function, usage, and surfaceMa-
terial. The attribute class describe the classification of the object. For TrafficArea, the attribute function describes
whether the object is a car driving lane, a pedestrian zone, or a cycle lane, while the usage attribute indicates which
modes of transportation can use it (e.g. pedestrian, car, tram, roller skates). The attribute surfaceMaterial specifies the
type of pavement and may also be used for AuxiliaryTrafficAreas (e.g. asphalt, concrete, gravel, soil, rail, grass etc.).
The function attribute of the AuxiliaryTrafficArea defines, among others, kerbstones, middle lanes, or green areas. The
possible values are specified in external code lists.

2.6. UML class diagram 47

3D City Database for CityGML, Release 4.1

Auxiliary
traffic
dreas
= T ’ - o : -JI. Ir Itl
1 - i
-
Road
Fig. 2.18: LoD2 representation of a transportation complex (from: [GKCN2008])

<<Feature>>
core::_CityObject

i

<<Feature>>
_TransportationObject
<<Feature>> <<Feature>> -) <<Feature>>
TrafficArea trafficArea TransportationComple auxiliaryTrafficArea AugxiliaryTrafficArea
+class : gml::CodeType [0..1] &——<>{+class : gml::CodeType [0..1] c* ? +class : gml::CodeType [0..1]
+function : gml::CodeType [0.."] * * |+#function : gml::CodeType [0.."] +function : gml::CodeType [0.."]
+usage : gml:CodeType [0..*] +usage : gml::CodeType [0..*] +usage : gml::CodeType [0..*]
+surfaceMaterial : gml::CodeType [0..1] T " { lodONstwork +surfaceMaterial : gml::CodeType [0..1]
I Ea [] * |
lod 1MultiSurface <<Feature>> <<Feature>> <<Geometry>>
lod2MultiSurface Track Railway gmil::GeometricComplex
lod3MultiSurface <<Feature>> <<Feature>>
lod2MultiSurface lod4MultiSurface Road Square
0 0.1
JodaMultiSurface o lod2MulliSurface
lod4MultiSurface | <<Geometry>> lod3MultiSurface
gml::MultiSurface lod4MultiSurface

Fig. 2.19: UML model for transportation complex

48

Chapter 2.

3D City Database

3D City Database for CityGML, Release 4.1

TransportationComplex is a subclass of _TransportationObject and of the root class _CityObject. The geometrical
representation of the TransportationComplex varies through the different levels of detail. In the coarsest LoDO, the
transportation complexes are modelled by line objects establishing a linear network. Starting from LoD1, a Transporta-
tionComplex provides an explicit surface geometry, reflecting the actual shape of the object, not just its centreline. In
LoD2 to LoD#4, it is further subdivided thematically into TrafficAreas, which are used by transportation, such as cars,
trains, public transport, airplanes, bicycles, or pedestrians and in AuxiliaryTrafficAreas, which are of minor importance
for transportation purposes, for example road markings, green spaces or flower tubs.

2.6.4.9 Tunnel Model

The tunnel model is closely related to the building model. It supports the representation of thematic and spatial aspects
of tunnels and tunnel parts in four levels of detail, LOD1 to LOD4. The UML diagram of the tunnel model is shown
in Fig. 2.21. The pivotal class of the model is _AbstractTunnel, which is a subclass of the thematic class _Site (and
transitively of the root class _CityObject). _AbstractTunnel is specialized either to a Tunnel or to a TunnelPart. Since
an _AbstractTunnel consists of TunnelParts, which again are _AbstractTunnels, an aggregation hierarchy of arbitrary
depth may be realized. Both classes Tunnel and TunnelPart inherit the attributes of _AbstractTunnel: the class of the
tunnel, the function, the usage, the year of construction and the year of demolition. In contrast to _AbstractBuilding,
Address features cannot be assigned to _AbstractTunnel.

Fig. 2.20: Example of a tunnel modelled with two tunnel parts

The geometric representation and semantic structure of an _AbstractTunnel is shown in Fig. 2.21. The model is
successively refined from LOD1 to LOD4. Therefore, not all components of a tunnel model are represented equally
in each LOD and not all aggregation levels are allowed in each LOD. An object can be represented simultaneously in
different LODs by providing distinct geometries for the corresponding LODs.

Similar to the building and bridge models (cf. Section 2.6.4.2 and Section 2.6.4.3), only the outer shell of a tunnel
is represented in LOD1 — 3, which is composed of the tunnel’s boundary surfaces to the surrounding earth, water, or
outdoor air. The interior of a tunnel may only be modelled in LOD4.

In LODI, a tunnel model consists of a geometric representation of the tunnel volume. Optionally, a MultiCurve
representing the TerrainlntersectionCurve can be specified. The geometric representation is refined in LOD2 by
additional MultiSurface and MultiCurve geometries. In LOD2 and higher LODs the outer structure of a tunnel can
also be differentiated semantically by the classes _BoundarySurface and Tunnellnstallation. A boundary surface is
a part of the tunnel’s exterior shell with a special function like wall (WallSurface), roof (RoofSurface), ground plate
(GroundSurface), outer floor (OuterFloorSurface), outer ceiling (OuterCeilingSurface) or ClosureSurface (see Fig.
2.22). The Tunnellnstallation class is used for tunnel elements like outer stairs, strongly affecting the outer appearance
of a tunnel. A Tunnellnstallation may have the attributes class, function and usage.

2.6. UML class diagram 49

3D City Database for CityGML, Release 4.1

<<Feature>> 4 <<Feature>> <]

core::_CityObject core::_Site
lod3ImplicitRepresentation 0.1 =<0Object=>
lodd4ImplicitRepreseniation | co::implctEeometny
loddimplicitRe presentation’- | D“"‘I'“7'm”"“'R"“f‘!=‘!”'F"“”
Ind 3AImnlicitRenresantatinn
ton 4 mplo 1Re presentr-g!iﬂ InddlmnlicitRenresantatinn
lod4Geometry 0.1 —<Goomely>> i'ﬂ lod2Geometry * T
lod4Geometry gmi::_Geometry lod 3Geometry . Tunnellnstallation
0.1 lod4Geometry + [+class : gml:CodeType [0..1]

+function : gml::CodeType [0..*] <>
+usage : gml:CodeType [0.%]

<<Feature>>
IntTi llation * /NouterTunnelinstallation
* |+class : gml:CodeType [0..1] .
+unction : gmi::CodeType [0..%]
+usage : gml:CodeType [0..]
.~ interierTunnellnstallation (5
hollowSpacelnstalation /| * . .
<<Feature=>
— _AbstractTunnel
* <<Feature>>
~ TunnelFurniture +class : gml:CodeType [0..1]
— +unction : gml::CodeType [0..4]
ic\ass. gmizCodeType [0..1] . +usage : gmlzCodeType [0.."]
fundtion : gml::CodeType (0.."] +yearOfConstruction : xs::gYear [0..1] .
tusage : gmi:CodeType [0.%] +yearOfDemolition : xszg¥ear [0..1] <
* /\interiorFurniture
0.1
<<Features> <<Feature>> <<Feature>> |
HollowSpace Tunnel TunnelPart
+class : gml:CodeType [0..1] consistsOfTunnelPart
+unction : gml::Code Type [0..%] interior HollowS pace:
Iy s arml- -
TR B BT SR o1 Sl lod IMultiSurface lod 1 Temainintersection led2MultiCurve
0.1 * |+ lnd? Salid lod2MultiSurface lod2Terrainintersection lod 3MultiCurve
Ind3 Snlid lod 3MultiSurface lod3Terrainintersection loddMultiCurve
0.1 TndaSolid lodaMultiSurface [*-1 [lod4Terainintersection
0.1 0.1
<<Geometry=> <<Geometry=> <<Geometry>>
foddsiols) gml::_Solid gml::MultiSurface gml:MultiCurve
0.1
D..‘I/T\ 0.1 0.1
. <<Fealure>> loddMultiSurface lod 2MultiSurface
E _0Opening ¥ lod 3MultiSurface lod3MultiSurface
: L = -
lodaMultiSurface iRt e
<<Feature>> <<Feature>> wl Al oundeds:
: * un v
Window Door boundedBy e<Fealines
_Bo ySurface bounded By
L *_boundedBy
[I I I] I 1
<<Feature>> <<Feature>> <<Feature>> <<Feature>> <<Feature>> <<Feafure>> <<Feature>>
RoofSurface WallSurfacee GroundSurface ClosureSurface CeilingSurface InteriorWallSurface FloorSurface
<<Feature>> <<Feature>>
OuterCeilingSurface OuterFloorSurface

Fig. 2.21: UML diagram of tunnel model

50 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

RoofSurface / OuterCeilingSurface

§ CeilingSurface v
e T E 8
& @ L] T
- = E @
@ = 3
F 8 s =z
it
= FloorSurface =
GroundSurface
Rectangular Cross Section
;‘f? é\smface
&
§ 3
g E
FloorSurface
GroundSurface

Circular Cross Section

-9 ksurface \suriace
g ¢ g ¢
§ 8 5 8
s = s =
FloorSurface
Circular Cross Section Circular Cross Seclion
cface / Ougg
o= ey,
< s g
Ge'\\‘“g' ur”‘-‘g %- l:?
5’ CeilingSurface
2
] @ - -
§ 3 K- g E
@ % % @ E E
= = FloorSurface = F FloorSurface
= =B o
GroundSurface
Arbitrary Cross Section Arbitrary Cross Section

Fig. 2.22: Different BoundarySurfaces of a tunnel

2.6. UML class diagram

51

3D City Database for CityGML, Release 4.1

In LOD3, the openings in _BoundarySurface objects (doors and windows) can be represented as thematic objects. In
LOD4, the highest level of resolution, also the interior of a tunnel, composed of several hollow spaces, is represented
in the tunnel model by the class HollowSpace. This enlargement allows a virtual accessibility of tunnels, e.g. for
driving through a tunnel, for simulating disaster management or for presenting the light illumination within a tunnel.
The aggregation of hollow spaces according to arbitrary, user defined criteria (e.g. for defining the hollow spaces
corresponding to horizontal or vertical sections) is achieved by employing the general grouping concept provided
by CityGML (cf. Section 2.6.4.1). Interior installations of a tunnel, i.e. objects within a tunnel which (in contrast
to furniture) cannot be moved, are represented by the class IntTunnellnstallation. If an installation is attached to a
specific hollow space (e.g. lamps, ventilator), they are associated with the HollowSpace class, otherwise (e.g. pipes)
with _AbstractTunnel. A HollowSpace may have the attributes class, function and usage whose possible values can
be enumerated in code lists. The class attribute allows a general classification of hollow spaces, e.g. commercial or
private rooms, and occurs only once. The function attribute is intended to express the main purpose of the hollow
space, e.g. control area, installation space, and storage space. The attribute usage can be used if the way the object is
actually used differs from the function. Both attributes can occur multiple times. The visible surface of a hollow space
is represented geometrically as a Solid or MultiSurface. Semantically, the surface can be structured into specialized
_BoundarySurfaces, representing floor (FloorSurface), ceiling (CeilingSurface), and interior walls (InteriorWallSur-
face). Hollow space furniture, like movable equipment in control areas, can be represented in the CityGML tunnel
model with the class TunnelFurniture. A TunnelFurniture may have the attributes class, function and usage.

2.6.4.10 Vegetation Model

The vegetation model of CityGML distinguishes between solitary vegetation objects like trees and vegetation areas,
which represent biotopes like forests or other plant communities. Single vegetation objects are modelled by the class
SolitaryVegetationObject, while for areas filled with specific vegetation the class PlantCover is used.

The geometry representation of a PlantCover feature may be a MultiSurface or a MultiSolid, depending on the vertical
extent of the vegetation. For example, regarding forests, a MultiSolid representation might be more appropriate (cf.
Fig. 2.23).

The UML diagram of the vegetation model is depicted in Fig. 2.24. A SolitaryVegetationObject may have the attributes
class (e.g. tree, bush, grass), species (species’ name, e.g. Abies alba), usage, and function (e.g. botanical monument),
height, trunkDiameter and crownDiameter. A PlantCover feature may have the attributes class (plant community),
usage, function (e.g. national forest) and averageHeight. Since both SolitaryVegetationObject and PlantCover are
CityObjects, they inherit all attributes of a city object, in particular its name (gml:name) and an ExternalReference
to a corresponding object in an external information system, which may contain botanical information from public
environmental agencies.

The geometry of a SolitaryVegetationObject may be defined in LoD 1-4 by absolute coordinates, or prototypically
by an ImplicitGeometry. Season dependent appearances may be mapped using ImplicitGeometries. For visualisation
purposes, only the content of the library object defining the object’s shape and appearance has to be swapped.

A SolitaryVegetationObject or a PlantCover may have a different geometry in each LoD. Whereas a SolitaryVegeta-
tionObject is associated with the _Geometry class representing an arbitrary GML geometry (by the relation lodXGe-
ometry), a PlantCover is restricted to be either a MultiSolid or a MultiSurface.

2.6.4.11 WaterBodies Model

The water bodies model represents the thematic aspects and 3D geometry of rivers, canals, lakes, and basins. In LoD
2-4 water bodies are bounded by distinct thematic surfaces. These surfaces are the obligatory WaterSurface, defined
as the boundary between water and air, the optional WaterGroundSurface, defined as the boundary between water and
underground (e.g. DTM or floor of a 3D basin object), and zero or more WaterClosureSurfaces, defined as virtual
boundaries between different water bodies or between water and the end of a modelled region (cf. Fig. 2.25). A
dynamic element may be the WaterSurface to represent temporarily changing situations of tidal flats.

52 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

PlantCover
(MultiSolid)

Fig. 2.23: Image illustrates objects of the vegetation model (from: [GKCN2008])

<<Feature>>
core::_Ci

ject

1

Ve,

<<Feature>>
tation Object

ZP

lod1Geometry *lod1N e
<<Feature>> <<Feature>>
<<Geometry>> 0..1 | lod2Geometry b SolitaryVegetationObject PlantCover +_lod2MultiSurface |o..1 <<Geometry>>
gmi::_Geometry __[&— |#class : gmi::CodeType [0..1] +class : gmi::CodeType [0..1] . ’ > gmi:MultiSurface
lod3Geometry function : gml::CodeType [0..1] +function : gml::CodeType [0..*] [l
lod4Geometry +|+usage : gml::CodeType [0.."] +usage : gml::CodeType [0.."] * lod4MultiSurface
+species : gml::CodeType [0..1] +averageHeight : gml::LengthType [0..1]
lod1ImplicitRepresentation [*height : gml:LengthType [0..1] +___lodiMultiSolid
+trunkDiameter : gml::LengthType [0..1] lo <G)
<<Object>> 0..1] lod2ImplicitRepresentation 4| +crownDiameter : gmiz:LengthType [0..1] [RS —> gml en::;:g,nd
core::ImplicitGeometry < lod3ImplicitRepresentation - lod3MultiSolid
lod4ImplicitRepresentation = * lod4MultiSolid

Fig. 2.24: Vegetation Model

2.6. UML class diagram

53

3D City Database for CityGML, Release 4.1

WaterSurface

_<> WaterBody

WaterClosure

, Surface

WaterGroundSurface

Fig. 2.25: Definition of waterbody attributes (from: [GKNH2012])

Each WaterBody object may have the attributes class (e.g. lake, river, or fountain), function (e.g. national waterway or
public swimming) and usage (e.g. navigable) referencing to external code lists. Since the attributes usage and function
may be used multiple times, storing them in only one string requires a unique delimiter.

WaterBody is a subclass of the root class _CityObject. The geometrical representation of the WaterBody varies for
different levels of detail. The WaterBody can be differentiated semantically by the class _WaterBoundarySurface.
A _WaterBoundarySurface is a part of the water body’s exterior shell with a special function like WaterSurface,
WaterGroundSurface or WaterClosureSurface. As with any _CityObject, WaterBody objects as well as WaterSurface,
WaterGroundSurface, and WaterClosureSurface objects may be assigned ExternalReferences and GenericAttributes.

Both LoDO0 and LoD1 represent a low level of illustration and high grade of generalisation. Here the rivers are modelled
as MultiCurve geometry and brooks are omitted. Seas, oceans, and lakes with significant extent are represented as
MultiSurfaces. (cf. Fig. 2.26)

Starting from LoD1, water bodies may also be modelled as volumes filled with water, represented by Solids. If
a water body is represented by a Solid in LoD2 or higher, the surface geometries of the corresponding thematic
WaterClosureSurface, WaterGroundSurface, and WaterSurface objects must coincide with the exterior shell of the
Solid. This can be ensured, if for one LoD X the respective lodXSurface elements (where X is between 2 and 4) of
WaterClosureSurface, WaterGroundSurface, and WaterSurface reference the corresponding polygons (using XLink)
within the CompositeSurface that defines the exterior shell of the Solid. Furthermore, every _WaterBoundarySurface
must have at least one associated surface geometry attached.

The water body model implicitly includes the concept of TerrainIntersectionCurves (TIC), e.g. to specify the exact
intersection of the DTM with the 3D geometry of a WaterBody or to adjust a WaterBody or WaterSurface to the
surrounding DTM. The rings defining the WaterSurface polygons implicitly delineate the intersection of the water
body with the terrain or basin.

For intuitive understanding, classes which will be merged to a single table in the relational schema, are shown as orange
blocks in the UML diagrams. n:m relations, which only can be represented by additional tables, are represented as
green blocks.

54 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

<<Feature>>
core::_CityObject

p

[
0-1 | sdoMultiSuriace <<Featlire>>
<<Geometry>> _WaterObject
gmil:MultiSurface lod1MuitiSurface [TX
<<Feature>> h : + lod2Surface
lod 1Solid * WaterBo & =
+dass - aml-CodeT e:}y” Botndel <<Feature>> . lod3surface | <<Geometry>>
0.1| lod2Solid . -9 yp _WaterBoundarySurface gml::_Surface
<<Geometry>> +function : gml::CodeType [0.."] « |od4Surface
gmi::_Solid lod3Solid « |+usage : gml:CodeType [0.."]
lod4Solid
lodOMultiC <<Feature>>
lodOMultiCurve || =
WaterSurface
<<Geom?try>> 0.1 X <<Feature>> <<Feature>> waterLevel - gmi=CodeType [0.1]
gml:MURICUVS ed MK Chve WaterClosureSurface WaterGroundSurface -gme: ype [0..

Fig. 2.26: Waterbody model

2.7 Relational database schema

2.7.1 Mapping rules, schema conventions

2.7.1.1 Mapping of classes onto tables

Generally, one or more classes of the UML diagram are mapped onto one table; the name of the table is identical to
the class name (a leading underscore indicating an abstract class is left out). Classes are combined into a single table
according to the class relations as shown in the UML diagrams by using orange coloured boxes. The scalar attributes
of the classes become columns of the corresponding table with identical name.

The types of the attributes are customized to corresponding database (Oracle/PostgreSQL) data types (see Table 2.1).
Some attributes of the data type date were mapped to TIMESTAMP WITH TIME ZONE to allow a more accurate
storage of time values.

2.7. Relational database schema 55

3D City Database for CityGML, Release 4.1

Table 2.1: Data type mapping (excerpt)

UML

Oracle

PostgreSQL / PostGIS

String, anyURI

VARCHAR?2, CLOB

VARCHAR, TEXT

Integer NUMBER NUMERIC

Double, gml:LengthType BINARY_DOUBLE DOUBLE PRECISION
Boolean NUMBER(1,0) NUMERIC

Date DATE DATE

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE

of type anyURI in CityGML)

Primitive Type VARCHAR?2 VARCHAR
(Color, TransformationMatrix,
CodeType etc.)
Enumeration VARCHAR2 VARCHAR
GML Geometry, SDO_GEOMETRY GEOMETRY
textureCoordinates
GML RectifiedGridCoverage SDO_GEORASTER RASTER

& SDO_RASTER
Texture (only reference BLOB BYTEA

2.7.1.2 Explicit declaration of class affiliation

In the (meta) table OBJECTCLASS, all class names (attribute CLASSNAME) of the schema are managed. The
relation of the subclass to its parent class is represented via the attribute SUPERCLASS_ID in the subclass as a

56

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

foreign key to the ID of the parent class.

The table OBJECTCLASS is used to efficiently determine the affiliation to a class in the superclass tables. In ad-
dition, the table CITYOBJECT contains the attribute OBJECTCLASS_ID which refers to the respective table OB-
JECTCLASS. This way, while looking at a tuple in CITYOBJECT, the subclass and — if needed — the name of the
class can be determined directly. This mechanism has also been adopted in other tables that are used to store dif-
ferent CityGML features, e.g. THEMATIC_SURFACE (for all different BoundarySurfaces of a Building feature)
or BUILDING_INSTALLATION (outer or interior) etc. Please consider that using CityGML ADEs could lead to
additional OBJECTCLASS_IDs in this table (please also refer to Section 2.7.3.1).

Table 2.2: Contents of the OBJECTCLASS table

ID CLASSNAME SUPERCLASS_ID
0 Undefined

1 _GML

2 _Feature 1

3 _CityObject 2

4 LandUse 3

5 GenericCityObject 3

6 _VegetationObject 3

7 Solitary VegetationObject 6

8 PlantCover 6

9 WaterBody 105
10 _WaterBoundarySurface 3

11 WaterSurface 10

Continued on next page

2.7. Relational database schema 57

3D City Database for CityGML, Release 4.1

Table 2.2 — continued from previous page

12 WaterGroundSurface 10
13 WaterClosureSurface 10
14 ReliefFeature 3
15 _ReliefComponent 3
16 TINRelief 15
17 MassPointRelief 15
18 BreaklineRelief 15
19 RasterRelief 15
20 _Site 3
21 CityFurniture 3
22 _TransportationObject 3
23 CityObjectGroup 3
24 _AbstractBuilding 20
25 BuildingPart 24
26 Building 24
27 BuildingInstallation 3
28 IntBuildinglInstallation 3
Continued on next page
58 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.2 — continued from previous page

29 _BuildingBoundarySurface 3

30 BuildingCeilingSurface 29
31 InteriorBuildingWallSurface 29
32 BuildingFloorSurface 29
33 BuildingRoofSurface 29
34 BuildingWallSurface 29
35 BuildingGroundSurface 29
36 BuildingClosureSurface 29
37 _BuildingOpening 3

38 BuildingWindow 37
39 BuildingDoor 37
40 BuildingFurniture 3

41 BuildingRoom 3

42 TransportationComplex 22
43 Track 42
44 Railway 42
45 Road 42

Continued on next page

2.7. Relational database schema

59

3D City Database for CityGML, Release 4.1

Table 2.2 — continued from previous page

46 Square 42
47 TrafficArea 22
48 AuxiliaryTrafficArea 22
49 FeatureCollection 2
50 Appearance 2
51 _SurfaceData 2
52 _Texture 51
53 X3DMaterial 51
54 Parameterized Texture 52
55 GeoreferencedTexture 52
56 _TextureParametrization 1
57 CityModel 49
58 Address 2
59 ImplicitGeometry 1
60 OuterBuildingCeilingSurface 29
61 OuterBuildingFloorSurface 29
62 _AbstractBridge 20
Continued on next page
60 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.2 — continued from previous page

63 BridgePart 62
64 Bridge 62
65 Bridgelnstallation 3

66 IntBridgelnstallation 3

67 _BridgeBoundarySurface 3

68 BridgeCeilingSurface 67
69 InteriorBridgeWallSurface 67
70 BridgeFloorSurface 67
71 BridgeRoofSurface 67
72 BridgeWallSurface 67
73 BridgeGroundSurface 67
74 BridgeClosureSurface 67
75 OuterBridgeCeilingSurface 67
76 OuterBridgeFloorSurface 67
77 _BridgeOpening 3

78 BridgeWindow 77
79 BridgeDoor 77

Continued on next page

2.7. Relational database schema

61

3D City Database for CityGML, Release 4.1

Table 2.2 — continued from previous page

80 BridgeFurniture 3
81 BridgeRoom 3
82 BridgeConstructionElement 3
83 _AbstractTunnel 20
84 TunnelPart 83
85 Tunnel 83
86 Tunnellnstallation 3
87 IntTunnellnstallation 3
88 _TunnelBoundarySurface 3
89 TunnelCeilingSurface 88
90 InteriorTunnelWallSurface 88
91 TunnelFloorSurface 88
92 TunnelRoofSurface 88
93 TunnelWallSurface 88
94 TunnelGroundSurface 88
95 TunnelClosureSurface 88
96 OuterTunnelCeilingSurface 88
Continued on next page
62 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.2 — continued from previous page

97 OuterTunnelFloorSurface 88
98 _TunnelOpening 3
99 TunnelWindow 98
100 TunnelDoor 98
101 TunnelFurniture 3
102 HollowSpace 3
103 TexCoordList 56
104 TexCoordGen 56
105 _WaterObject 3
106 _BrepGeometry 0
107 Polygon 106
108 BrepAggregate 106
109 TexImage 0
110 ExternalReference 0
111 GridCoverage 0
112 _genericAttribute 0
113 genericAttributeSet 112

2.7. Relational database schema

63

3D City Database for CityGML, Release 4.1

2.7.2 Conceptual database structure

Starting from version 4.0.0, the 3DCityDB database schema has been slightly modified to support the handling of
CityGML ADEs (Application Domain Extensions). With this enhancement, user-defined database schemas can be
dynamically created and attached to a 3DCityDB instance for storing ADE data contents. In addition, every existing
CityGML class table is now equipped with an OBJECTCLASS_ID column which allows to distinguish the stored data
contents of different CityGML and ADE classes having inheritance relationships. Moreover, a set of new metadata
tables are introduced in addition to the existing OBJECTCLASS table, for holding the relevant meta-information of
the registered CityGML ADEs. In general, all 3DCityDB tables now logically belong to one of the three modules
Metadata Module, Core Data Module, and Dynamic Data Module, whose relations are shown in the following figure.

Core Data Module

.
=~ 7
N T Teel - = A
—————————————————————— e ittt e e e s

\‘ ™ P ~a 7’ 1
S - N € 1

T e EE e EE e EEmsmmmEEm- L‘_______________N'_:__’_J" ______________ = _""::_“ _____ :7’_ _______________ :' _______________
Dynamic Data Module PR N T]
V 27 i £ ““~ 1
. ‘.‘“-‘ 1
CityGML ADE 1 CityGML ADE 2 s~

Modules = = =

[Many More ADEs |

Fig. 2.27: New conceptual 3DCityDB database structure for handling CityGML ADEs

The green tables enclosed in the Core Data Module represent those database tables that are responsible for storing
the standard CityGML models such as Building, Transportation, Tunnel, CityFurniture, CityObjectGroup, Generic,
Appearance etc. This module comprises basically the tables of the database schema of previous versions of the
3DCityDB (cf. the next section for more details). For a given CityGML ADE, an additional group of database
tables forming a separate module belonging to the Dynamic Data Module (pink tables in the figure) can be created
and attached to the 3DCityDB database schema. In addition, the relationships (e.g. generalization/specialization
and associations) among the model classes of CityGML and CityGML ADE:s are adequately reflected using database
foreign key constraints which allow to ensure the data integrity and consistency within the database system. The
Metadata Module associated with the Dynamic Data Module is utilized for storing the relevant meta-information (e.g.
the XML namespaces, schema files, and class affiliations etc.) about ADEs as well as the referencing relations among
the ADE and CityGML application schemas. This way, the dependencies between the registered ADE application
schemas can be directly read from the 3DCityDB database schema to facilitate the database administration process,
i.e. the registration and deregistration of multiple CityGML ADEs within a 3DCityDB instance.

64 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

2.7.3 Database schema

In the following paragraph, the tables of the relational schema are displayed graphically and described in detail. The
description is based on the remarks on UML charts in Section 2.6. Focus is put on situations where the conversion
into tables leads to changes in the model.

2.7.3.1 Metadata Model

An overview of the relational structure of the Metadata Module is shown in Fig. 2.28. The table ADE serves as a
central registry for all the registered CityGML ADEs each of which corresponds to a table row and the relevant ADE
metadata attributes are mapped onto the respective columns. For example, each registered ADE shall own a globally
unique ID value for identification purpose. This ID value could be a UUID (Universally Unique Identifier) which can
be automatically generated and stored in the column ADEID while registering the ADE. The columns NAME and
DESCRIPTION are mainly used for storing the basic description information of each ADE. The column VERSION
denotes the version number of an ADE and allows to distinguish different release versions. In the 3DCityDB database
schema, the database objects like tables, indexes, foreign key constrains, and sequences of a certain ADE shall be
named by starting with a unique prefix. This allows applications to rapidly fetch out the database schema of a certain
ADE using a wildcard filter. In this way, it is possible to automatically perform some kinds of statistics on the ADE data
contents stored in the individual tables. In addition, the column XML_SCHEMAMAPPING_FILE is used to store the
XML-formatted schema mapping information of each ADE and is henced defined with the CLOB data type. Another
CLOB-typed column is DROP_DB_SCRIPT where the SQL statements for dropping the individual ADE database
schema is saved and can be easily retrieved and carried out at the database side. Moreover, the CREATION_DATE
and CREATION_PERSON are two application-specific attribute columns for providing the information about who
and when have operated the ADE registration process. This meta-information is typically helpful for 3DCityDB users
to accomplish the administration work e.g. searching and cleaning up those ADEs that are outdated or registered by
certain database users.

A CityGML ADE may consist of multiple application schemas one of which should be the root schema referencing
the others. Such dependency information along with the meta-information of the individual schema are stored in two
tables, namely SCHEMA and SCHEMA_REFERENCING. The SCHEMA_REFERENCING table is an associative
table which contains two foreign key columns REFERENCED_ID and REFERENCING_ID to link the respective
referencing and referenced schemas. In the table SCHEMA, the flag attribute IS_ADE_ROOT is used for denot-
ing the root schema that directly or indirectly references all the other ADE schemas of an ADE. In this way, the
dependency hierarchy of the ADE schemas can be fully represented in a relational model to facilitate the reconstruc-
tion of the original schema relations through user applications. For each schema, its meta-information such as the
schema location, namespace, namespace prefix, source XML schema definition file, as well as the file type (e.g. plain
XML text or archived) of the schema can also be stored in the further columns of the SCHEMA table. The column
CITYGML_VERSION refers to the consideration that an ADE schema may have two different versions, because they
can be defined based on both CityGML version 1.0.0 and 2.0.0 at the same time.

The table OBJECTCLASS is a central registry for enumerating not only the standard CityGML classes but also the
classes of the registered ADEs. Each class is assigned with a globally unique numeric ID for querying and accessing
the class-related information. As explained in the Section 2.7.1.2, the ID values ranging from 0 to 113 have already
been reserved for the standard CityGML classes. Thus, the ID values of the registered ADE classes must be larger
than 113. Concerning the situation that more additional feature classes might be introduced into the future versions of
the CityGML standard, a certain range of integer values must be preserved and shall not be used for ADEs. Therefore,
for each ADE, it is recommended to assign its classes with a set of relatively large integer values which can be
incrementally sequenced with an initial value of 10000. In order to avoid the class ID conflict, each ADE shall
own a certain large value range which can be centrally maintained and organized by an official community like the
3DCityDB group. The OBJECTCLASS table also contains a few additional columns like the IS_ADE_CLASS which
is a flag attribute to denote which classes are belonging to ADEs. Another column named TABLENAME refers to
the table name of a CityGML or ADE class and provides the basic information about model mapping. The last two
columns SUPERCLASS_ID and BASECLASS_ID are two foreign key columns of the ID column for representing the
inheritance hierarchy of all the CityGML and ADE classes in a relational structure.

2.7. Relational database schema 65

3D City Database for CityGML, Release 4.1

i) SCHEMA_REFERENCING
REFEREMCING_ID : NUMBER
REFEREMCED_ID : NUMBER

«PKzSCHEMA_REFEREMNCING _PK: REFERENCING _ID, REFERENCED_ID
«FK=SCHEMA_REFEREMCING _FK1: REFERENCING _ID
«FK=SCHEMA_REFEREMNCING_FKZ: REFERENCED_ID

REFERENCED_ID 1
3 $
&= SCHEMA

I - NUMBER

IS_ADE_ROOT : NUMBER(1, 0)
CITYGML_VERSION : ARCHAR2(50)
KML_NAMESPACE_URI: VARCHAR2(4000)
¥ML_NAMESPACE_PREFIX : \VARCHAR2(50)
¥ML_SCHEMA_LOCATION : ' ARCHAR2(4000)
¥ML_SCHEMAFILE : BLOB
XML_SCHEMAFILE_TYPE : VARCHARZ(256) .
ADE_ID : NUMBER

REFEREMCING_ID

<PK>SCHEMA_PI: ID
sFIaSCHEMA_ADE_FK: ADE_ID

0 ¥

SCHEMA_ID

* o]

B SCHEMA_TO_OBJECTCLASS
SCHEMA_ID : NUMBER
OBJECTCLASS_ID : NUMBER

«PK=SCHEMA_TO_OBJECTCLASS_PK: SCHEMA_ID, OBJECTCLASS_ID
«FK=SCHEMA_TO_OBJECTCLASS_FK1: SCHEMA_ID
«FKSCHEMA_TO_OBJECTCLASS _FKZ: OBJECTCLASS_ID

i) DATABASE_SRS
SRID : NUMBER(38, 0)
GML_SRS_NAME : VARCHAR2(1000)

UNVERSIOMED TABLE

«PK=DATABASE_SRS_PK: SRID

E ADE
D : NUMBER

ADEID : VARCHAR2(256)

NAME : VARCHAR2(1000)

ADE_ID

DESCRIPTION : VARCHARZ{4000)

- WERSION : VARCHARZ(SO)

OBJECTCLASS_ID

1

———*# :FK>0BJECTCLASS_ADE_FK: ADE_D

DE_PREFIX : WARCHARZ{10)
KML_SCHEMAMAPPING _FILE : CLOB
DROP_DB_SCRIPT : CLOB

CREATION_DATE : TIMESTAMP WITH TIME ZOMNE
CREATION_PERSON : WV ARCHARZ(256)

«PK=ADE_PK: ID

ADE_ID ¥ 0.1

isg] OBJECTCLASS

D - NUMBER

IS_ADE_CLASS : NUMBER(1, 0)

1S_TOPLEVEL : NUMBER(1, 0) a4
CLASSNAME : VARCHAR2(256) [P
TABLEMAME : " ARCHARZ2(30) SUPERCLASS ID
SUPERCLASS_ID : NUMBER -
BASECLASS_ID : NUMBER

ADE_ID : NUMBER 0.1

«PK=0BJECTCLASS_PK: ID

BASECLASS_ID

«FH=0BJECTCLASS_BASECLASS_FK: BASECLASS_|ID
«FK=0BJECTCLASS_SUPERCLASS_FK: SUPERCLASS_ID

CHILD_D#$ 1 PARENT_ID 1

*

D .| D

i) AGGREGATION_INFO

CHILD_ID : NUMBER

PARENT_ID : NUMBER

JOIN_TABLE_OR_COLUMN_NAME : VARCHARZ2(30)

MIM_OCCURS : NUMBER

MAX_OCCURS : NUMBER

IS COMPOSITE : NUMBER(1, 0)
«PKzAGGREGATION_INFO_PK: CHILD_ID, PARENT_ID, JOIN_TABLE_OR_COI
«FIsAGGREGATION_INFO_FK1: CHILD_ID

<FKsAGGREGATION_INFO_FK2: PARENT_ID

Fig. 2.28: Technical implementation of the 3DCityDB Metadata Module in a relational diagram

66

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

In addition to the inheritance relationship, the aggregation relationship between CityGML and ADE classes can also
be represented within a 3DCityDB instance by means of the table AGGREGATION_INFO. Its first two columns
CHILD_ID and PARENT_ID are two foreign key columns which point to the primary key column of the table OB-
JECTCLASS to reflect the two related classes. The aggregation or composition relationship between each pair of
classes can be distinguished by using the flag attribute IS_COMPOSITE whose value can either be 0 (aggregation) or 1
(composition). In 3DCityDB, each aggregation/composition is logically mapped onto a foreign key column or an asso-
ciative table for joining the two respective class tables. This meta-information can also be stored in the table AGGRE-
GATION_INFO using its column JOIN_TABLE_OR_COLUMN_NAME. In addition, the multiplicity of the individ-
ual aggregation/composition are stored in the two numeric columns MIN_OCCURS and MAX_OCCURS. In case of
a 0..* relationship where the value of the multiplicity end is unbounded, the value in the column MAX_OCCURS shall
be set NULL.

2.7.3.2 Core Model

CITYOBJECT, CITYOBJECT_SEQ

All CityObjects (and instances of the subclasses like Buildings etc.) are represented by tuples in the table CITYOB-
JECT. The fields are identical to the attributes of the corresponding UML class, plus additional columns for metadata
like LAST_MODIFICATION_DATE, UPDATING_PERSON, REASON_FOR_UPDATE and LINEAGE.

The bounding box (gml:Envelope) is stored as rectangular geometry using five points, that join the minimum and
maximum X, y and z coordinates of the bounding box and define it completely. For backwards compatibility reasons
(to Oracle 10g), the envelope cannot be stored as a volume.

-
AL

Fig. 2.29: The CityObject’s envelope specified by two points with minimum and maximum coordinate values (left:
black points) is stored as a 3D rectangle (right: black polygon using five points)

In order to identify each object, a unique identifier is essential. Therefore, the column GMLID stores the gml:id value
of every city object. But since gmi:ids cannot be guaranteed to be unique over different CityGML files, the column
GMLID_CODESPACE is provided in addition. It may contain, for instance, the full path to the imported CityGML
file containing the object. The combination of GMLID and GMLID_CODESPACE should be ensured to be unique
for each CityObject.

2.7. Relational database schema 67

3D City Database for CityGML, Release 4.1

The attributes NAME or NAME_CODESPACE can contain more than one gml:name property. In this case they have
to be separated by the string ‘—/\-" (more details on the following page). The CityGML exporter will then create
multiple occurrences of <gml:name> elements.

The attribute OBJECTCLASS_ID provides information on the class affiliation of the CityObject. This helps to identify
the proper subclass tables.

The next free ID value for the table CITYOBJECT is provided by the database sequence CITYOBJECT_SEQ. This
ID is also reused in the separate tables for the different thematic features.

CITYMODEL, CITYMODEL_SEQ

CityObject features may be aggregated to a single CityModel. A CityModel serves as root element of a CityGML
feature collection. In order to provide a unique identifier in table CITYMODEL, the next available ID value is provided
by the sequence CITYMODEL_SEQ.

EXTERNAL_REFERENCE, EXTERNAL_REF _SEQ

The table EXTERNAL_REFERENCE is used to store external references; the foreign key CITYOBJECT_ID refers
to the associated CityObject. The sequence EXTERNAL_REF_SEQ provides the next available ID value for EXTER-
NAL_REFERENCE.

CITYOBJECTGROUP, GROUP_TO_CITYOBJECT

The n:m relationship between an object group (table CITYOBJECTGROUP) consisting of city objects contained in
CITYOBIJECT is realized by the table GROUP_TO_CITYOBIJECT, which associates the IDs of both tables. The
following tables shows an example, in which two buildings are grouped to a hotel complex.

Table 2.3: Cityobjectgroup table (excerpt)

ID CLASS CLASS_ FUNCTION FUNCTION_ USAGE USAGE _
CODESPACE CODESPACE CODESPACE
1 NULL NULL Building NULL Hotel NULL
group
Table 2.4: GROUP_TO_CITYOBJECT table
CITYOBJECT_ID CITYOBJECTGROUP_ID ROLE
2 1 Main building
4 1 Annex

68 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.5: Cityobject table (excerpt)

D OBJECTCLASY GML_ID ENVELOPE | CREATION | ppono o
ID -DATE _DATE

2 26 Build1632 GEOMETRY | 2015-02-02 NULL
09:26:07.441+01

4 26 Build1633 GEOMETRY | 2015-02-02 NULL
09:26:07.441401

| 23 Group1700 NULL 2015-02-02 NULL
09:26:07.441+01

For attributes CLASS, FUNCTION and USAGE there is an additional _CODESPACE column in order to specify the
source of code lists used for values (e.g. by a globally unique URL). As a CityGML feature like CityObjectGroup can
have multiple instances of attributes class, function and usage but only one target column exist in the table, values are
separated by the string sequence ‘—/\-". The CityGML exporter will then create multiple occurrences of corresponding
elements. Normalization rules were not applied in this case in order to avoid many joins when querying all information
of building objects. Array types weren’t used either as their implementation varies between different database systems.

This concept applies to all CityGML features and can therefore be found in every object table (except for boundary
surfaces of buildings, bridges and tunnels). They do not appear once in the CITYOBJECT table, because they are
belonging to the namespace of a certain thematic module and should be stored along with other attributes of that
feature.

2.7.3.3 Tables for geometry representation

The representation of the geometry stored in table SURFACE_GEOMETRY differs substantially from the UML chart
explained in the CityGML specification; nevertheless, it offers about the same functionality.

SURFACE_GEOMETRY, SURFACE_GEOMETRY_SEQ

In the database schema the geometry consists of planar surfaces which correspond each to one entry in the table
SURFACE_GEOMETRY. The surface-based geometry is stored as attribute GEOMETRY (in each case exactly one
planar polygon, possibly including holes). The implicit geometry is stored as attribute IMPLICIT_GEOMETRY. The
volumetric geometry is stored as attribute SOLID_GEOMETRY and its boundary surfaces (outer shell) will be stored
as attribute GEOMETRY as well. Any surface may have textures or a colour on both sides. Textures are stored within
the tables which implement the appearance model (cf. Section 2.6.3).

The geometry information in the fields GEOMETRY and IMPLICIT_GEOMETRY of the table SUR-
FACE_GEOMETRY is limited as follows:

2.7. Relational database schema 69

3D City Database for CityGML, Release 4.1

]

tables
CITYOBJECTGROUP.
1D NUMEER

OBJECTCLASS_ID : NUMBER

CLASS: VARCHAR2(256)
CLASS_CODESPACE : VARCHAR2(4000)
FUNCTION : VARCHAR2(1000)
FUNCTION_CODESPACE : VARCHAR2(4000)
USAGE : VARCHARZ(1000)
USAGE_CODESPACE : VARCHAR2{4000)
BREP_ID : NUMBER

OTHER_GECHI : MDS ¥S.SDO_GEOMETRY
PARENT_CITYOBUECT_ID : NUMBER

‘<PKGCITYOBJECTGROUP_PK: D
<FIsGROUP_EREP_FK: BREP_ID
<FIsGROUP_CITYCBJECT_FK: D
«FK2GROUP_OBJECTCLASS_FK: OBJECTCLASS_D
‘«FI2GROUP_PARENT_CITYOB._FK: PARENT_CITYOBJECT_D

= aables
CITYMODEL
D NUMBER
GMLID : VARCHAR2(256)
GMLID_CODESPACE : VARCHARZ(1000)
AN : VARCHAR2(1000)
NANE_CODESPACE : VARCHAR2(4000)
DESCRIPTION : //ARCHAR2(4000)
ENVELOPE : MDS'S.SDO_GEOMETRY
CREATION_DATE : TIMESTAMP VITH TIME ZONE 1
TERMINATION_DATE : TIMESTAMP VWITH TIVE ZONE
LAST_MODFICATION_DATE : TIMESTAMP VWITH TME ZONE
UPDATING_PERSON : VARCHAR2(256)
REASGN_FOR_UPDATE : Y/ ARCHAR2(4000)
LINEAGE : VARCHAR2(256)

<PKCITYMODEL_PK; D

=

CITYOBJECT D : NUMBER
CITYOBJECTGROUP_ID : NUMBER
ROLE : VARCHAR2(258)

3DCHyDB
GROUP_TO_CITYOBJECT

1 .
| |
@PK3GROUP_TO_CITYOBUECT_PH: CITYOBUJECT_ID, CITYOBJECTGROUP_ID
«FIGROUP_TO_CITYOBJECT_FI: CITYOBJECT_ID
<FKsGROUP_TO_CITYOBUECT_FK1: CITYOBJECTGROUP_ID

S

stables
CITYOBJECT_VEMBER

CITYMODEL_D : NUMBER
CITYOBJECT_ID : NUMBER

<PKGaCITYOBJECT_MEMBER_PK: CITYMODEL D, CITY OBJECT_ID
'<FI6aCITYOBJECT_MEMBER_FIG CITYOBJECT D
‘<FIGaCITYOBJECT_MEMBER_FK1: CITYMODEL_ID

1

(]

1D : NUMBER
OBJECTCLASS_ID : NUMBER

GILID : VARCHAR2(258)
‘GILID_CODESPACE : ARCHAR2{1000)
NAME : VARCHAR2(1000)
NAME_CODESPACE : VARCHAR2(4000)
DESCRIPTION : VVARCHAR2(4000)

atables
CITYOBJECT

UPDATING_PERSON : VARCHAR2(256)
REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)
XML_SOURCE : CLOB

<PK>CITYOBUJECT_PK: D

<FIG3CITYOBJECT_OBJECTCLASS_FI: OBJECTCLASS_ID

Inw 0.1 1

. . 01
01
=] dables
SURFACE_GECHETRY.

1D : NUMBER
GHLID : VARCHAR2(256)
GHILID_CODESPACE : ARCHAR2(1000)
PARENT_ID : NUMBER

ROOT_ID - NUMBER

1S_SOLID : NUMBER(1, 0)
1S_COMPOSITE : NUMBER(1, 0)
1S_TRIANGULATED : NUMBER(1, 0)

SOLID_GEOMETRY : MDSYS.SDO_GEOMETRY
IMPLICIT_GEOMETRY : MDSYS SD0_GEGHETRY
CITYOBJECT_ID : NUMBER

<PKaSURFACE_GEOMETRY PIt: ID
«FKSURFACE_GEOM_CITYOBU_FK: CITYOBJECT_D
‘«FKsSURFACE_GEOM_PARENT_FI: PARENT_D
«FI6SURF ACE_GEOM_ROOT_FK: ROOT_D

] atables
EXTERNAL_REFERENCE
1D : NUMBER

INFOSY'S : VARCHAR2(4000)

NAME : VARCHAR2(4000)

URI: VARCHAR2(4000)
CITYOBJECT_ID : NUMBER

. \<PKSEXTERNAL_REFERENCE _PIt: ID
<FISEXT_REF_CITYOBJECT_FK: CITYOBJECT_ID

] atables
GENERALIZATION
CITYOBJECT_D : NUMBER
GENERALIZES_TO_ID : NUMBER

<PK>GENERALIZATION_PK: CIT OBJECT_ID, GENERALIZES_TO_D .
<FKSGENERAL_CITYOBJECT_FK: CITYOBJECT_D
<FK3GENERAL_CENERALIZES_TO_FK: GENERALIZES_TO_ID

Fig. 2.30: Database schema of the CityGML core elements

70

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.6: Storage of polygonal geometry

Oracle

PostGIS

- SDO_GTYPE must have the type Polygon, i.e. a
polygon with 3D coordinates (SDO_GTYPE = 3003)

- SDO_ETYPE must be 1003/2003 with
SDO_INTERPRETATION =1 (i.e. polygon with
3D coordinates in the boundary, bounded just by
linesegments, possibly including holes)

- In addition Oracle allows the representation
of a rectangle by two corner points
(SDO_ETYPE=1003/2003,

with SDO_INTERPRETATION = 3)

- SDO_SRID of implicit geometries can be
any SRID Oracle supports. No spatial index
is defined on the column by default.

- Only POLYGON Z is allowed, i.e. a polygon
with 3D coordinates

- Polygons might have holes
- The IMPLICIT_GEOMETRY column has no

SRID defined. Thus, entries in that column
will have the SRID 0 automatically

A solid is the basis for 3-dimensional geometry. The extent of a solid is defined by the boundary surfaces (outer shell).
A shell is represented by a composite surface, where every shell is used to represent a single connected component of
the boundary of a solid. It consists of a composite surface (a list of OrientableSurfaces) connected in a topological
cycle. Unlike a ring, a shell’s elements have no natural sort order. Like rings, shells are simple. The geometry in the
field SOLID_GEOMETRY of the table SURFACE_GEOMETRY is limited as follows:

2.7. Relational database schema

71

3D City Database for CityGML, Release 4.1

Table 2.7: Storage of 3D geometry

Oracle

PostGIS

- SDO_GTYPE must have the type Solid, i.e. a solid
with 3D coordinates (SDO_GTYPE = 3008)

- SDO_ETYPE must be 1007 (simple solid) or
1008 (composite solid)

- A simple solid can be represented by using
several polygons as its boundary
(SDO_ETYPE=1007,

with SDO_INTERPRETATION = 1)

- The composite solid can be constructed with

a number of simple solids, e.g. a composite
solid with 4 simple solids (SDO_ETYPE=1008,
with SDO_INTERPRETATION = 4)

- Only POLYHEDRALSURFACE is allowed, i.e.
the outer shell of a solid with 3D coordinates

- A simple polyhedral surface can be represented
by using several polygons as its boundary

Surfaces can be aggregated to form a complex of surfaces or the boundary of a volumetric object. The aggregation of
multiple surfaces, e.g. F; to F,, (IDs 6 to 10 in Fig. 2.31 / Fig. 2.32) is realized the way that the newly created surface
tuple F,;; (ID 2) is not assigned a geometry (cf. Table 2.8). Instead, the PARENT_ID of the surfaces F; to F, refer to

the ID of Fy;.
Geometry Root
ID=1
ROOT_ID=1
1IS_SOLID=1
IS_COMPOSITE=0
|========== |
LoD1 Surface 1 1
ID=2 : :
PARENT_ID=1 I .
ROOT _ID =1 I 3
IS_SOLID=0 1 1
IS_COMPOSITE=1 !_ _!
Surface 3 Surface 4 Surface 5 Surface 6 Surface 7
ID=6 ID=7 ID=8 D=8 ID=10
PARENT_ID=2 PARENT_ID=2 PARENT_ID=2 PARENT_ID=2 PARENT_ID=2
ROOT_ID =1 ROOT_ID =1 ROOT_ID =1 ROOT_ID =1 ROOT_ID =1
IS_SOLID=0 IS_SOLID=0 IS _SOLID=0 IS_SOLID=0 IS _SOLID=0
IS_COMPOSITE=0 1S_COMPOSITE=0 1S_COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0

In addition, a further tuple (ID 1) is introduced, which represent the solid and defines the root element of the whole

Fig. 2.31: Geometry hierarchy for the solid geometry shown in Fig. 2.32

72

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

aggregation structure. Each surface references to its root, using the ROOT_ID attribute. This information has big
influence on the system performance, as it allows to avoid recursive queries. If e.g. the retrieval of all surface ele-
ments forming a specific building is of importance, simply those tuples have to be selected which contain the related
ROOT_ID. On the downside there also follows the limitation that each tuple in SURFACE_GEOMETRY can only
belong to one aggregate.

Various flags characterise the type of aggregation: IS_TRIANGULATED denotes a TriangulatedSurface, IS_SOLID
distinguishes between surface (0) and solid (1), and IS_COMPOSITE defines whether this is an aggregate (e.g. Mul-
tiSolid, MultiSurface) or a composite (e.g., CompositeSolid, CompositeSurface).

Based on these flags the geometry types listed in Table 2.8 can be distinguished. To distinguish a MultiSolid from
a MultiSurface its child elements have to be analysed: In case the child is a Solid, the geometry can be identified as
MultiSolid.

Table 2.8: Attributes determining aggregation types

isSolid isComposite isTriangulated | Geometry SOLID_
GEOMETRY

Polygon, GEOMETRY NULL
Triangle,
Rectangle
MultiSurface NULL NULL
CompositeSurfacg v NULL NULL
TriangulatedSurface v NULL NULL
Solid v NULL GEOMETRY
MultiSolid NULL NULL
CompositeSolid | v v NULL GEOMETRY

Aggregated surfaces can be grouped again with other (compound) surfaces, by generating a common parent. This way,
arbitrary aggregations of Surfaces, CompositeSurfaces, Solids, CompositeSolids can be formed. Since all tuples in an
aggregated geometry refer to the same ROOT_ID all tuples can be retrieved efficiently from the table by selecting
those tuples with the same ROOT_ID.

The aggregation schema allows for the definition of nested aggregations (hierarchy of components). For example,

2.7. Relational database schema 73

3D City Database for CityGML, Release 4.1

a building geometry (CompositeSolid) can be composed of the house geometry (CompositeSolid) and the garage
geometry (Solid), while the house’s geometry is further decomposed into the roof geometry (Solid) and the geometry
of the house body (Solid).

In addition, the foreign key CITYOBJECT _ID refers directly to the CityGML features to which the geometry belongs.
In order to select all geometries forming the city object one only has to select those with the same CITYOBJECT_ID.

In order to provide a unique identifier in table SURFACE_GEOMETRY, the next available ID value is provided by the
sequence SURFACE_GEOMETRY_SEQ.

Example: The geometry shown in the figure below consists of seven surfaces which form a volumetric object. In the
table it is represented by the following rows:

Surface Number @

(7
(5

Fig. 2.32: LoD 1 building - closed volume bounded by a CompositeSurface which consists of single polygons

74 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.9: Excerpt of table SURFACE_GEOMETRY representing the
example given in Fig. 2.32

ID GMLID PARENT _ | ROOT_ IS_ IS_COM GEOMETRYSOLID_
ID 1D SOLID POSITE
GEOMETR
1 UUID NULL 1 1 0 NULL GEOMETRY
lodl for Solid
2 lod1 1 1 0 1 NULL NULL
Surface
3 Leftl 2 1 0 0 GEOMETRY NULL
for surface
3
4 Front1 2 1 0 0 GEOMETRY NULL
for surface
4
5 Rightl 2 1 0 0 GEOMETRY NULL
for surface
5
6 Backl 2 1 0 0 GEOMETRY NULL
for surface
6
7 Roof1 2 1 0 0 GEOMETRY NULL
for surface
7
In addition, two further attributes are included in SURFACE_GEOMETRY: IS_XLINK and IS_REVERSE.
IS_XLINK
2.7. Relational database schema 75

3D City Database for CityGML, Release 4.1

CityGML allows for sharing of geometry objects between different geometries or different thematic features using the
XLink concept of GML3. For this purpose, the geometry object to be shared is assigned an unique gml:id which may
be referenced by a GML geometry property element through its xlink:href attribute. This concept allows for avoiding
data redundancy. Furthermore, CityGML does not employ the built-in topology package of GML3 but rather uses the
XLink concept for the explicit modelling of topology (see [GKCN2008] p. 25).

Although an XLink can be seen as a pointer to an existing geometry object the SURFACE_GEOMETRY table does
not offer a foreign key attribute which could be used to refer to another tuple within this table. The main reason for
this is that the referenced tuple typically belongs to a different geometry aggregate, e.g. a different gml:Solid object,
and thus contains different values for its ROOT_ID and PARENT_ID attributes. Therefore, foreign keys would violate
the aggregation mechanism of the SURFACE_GEOMETRY table.

The recommended way of resolving of XLink references to geometry objects requires two steps: First, the referenced
tuple of the SURFACE_GEOMETRY table has to be identified by searching the GMLID column for the referenced
gml:id value. Second, all attribute values of the identified tuple have to be copied to a new tuple. However, the
ROOT_ID and PARENT_ID of this new tuple have to be set according to the context of the referencing geometry
property element.

Please note:

1. If the referenced tuple is the top of an aggregation (sub)hierarchy within the SURFACE_GEOMETRY table,
then also all nested tuples have to be recursively copied and their ROOT_ID and PARENT_ID have to be
adapted.

2. Copying existing entries of the SURFACE_GEOMETRY table results in tuples sharing the same GMLID. Thus,
these values cannot be used as a primary key.

When it comes to exporting data to a CityGML instance document, XLink references can be rebuilt by keeping track
of the GMLID values of exported geometry tuples. Generally, for each and every tuple to be exported it has to be
checked whether a geometry object with the same GMLID value has already been processed. If so, the export routine
should make use of an XLink reference.

However, checking the GMLID of each and every tuple may dramatically slow down the export process. For this
reason, the IS_XLINK flag of the SURFACE_GEOMETRY has been introduced. It may be used to explicitly mark
just those tuples for which a corresponding check has to be performed. The IS_XLINK flag should be used in the
following manner. The Importer/Exporter provides a corresponding reference implementation.

1. During import
a. By default, the IS_XLINK flag is set to “0”.

b. If existing tuples have to be copied due to an XLink reference, IS_XLINK has to be set to “1” for each and
every copy. Please note, that this rule comprises all copies of nested tuples.

c. Furthermore, IS_XLINK has to be set to “1” on the original tuple addressed by the XLink reference. If this
tuple is the top of an aggregation (sub)hierarchy, IS_XLINK remains “0” for all nested tuples.

2. During export

a. The export process just has to keep track of the GMLID values of those geometry tuples where IS_XLINK is
set to “17.

b. When it comes to exporting a tuple with IS_XLINK set to “1”, the export process has to check whether it already
came across the same GMLID and, thus, can make use of an XLink reference in the instance document.

c. For each tuple with IS_XLINK=0 no further action has to be taken.

Especially due to (2c), the IS_XLINK attribute helps to significantly speed up the export process when rebuilding
XLink references. Please note, that this is the only intended purpose of the IS_XLINK flag.

IS_REVERSE

76 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

The IS_REVERSE flag is used in the context of gml:OrientableSurface geometry objects. Generally, an Orienta-
bleSurface instance cannot be represented within the SURFACE_GEOMETRY table since it cannot be encoded using
the flags IS_SOLID, IS_COMPOSITE, and IS_TRIANGULATED (cf. Table 5). However, the IS_REVERSE flag
is used to encode the information provided by an OrientableSurface and to rebuild OrientableSurfaces during data
export.

According to GML3, an OrientableSurface consists of a base surface and an orientation. If the orientation is “+”,
then the OrientableSurface is identical to the base surface. If the orientation is “-“, then the OrientableSurface is a
reference to a surface with an up-normal that reverses the direction for this OrientableSurface.

During import, only the base surfaces are written to the SURFACE_GEOMETRY table. The following rules have to
be obeyed in the context of OrientableSurface:

1. If the orientation of the OrientableSurface is “-, then

a. The direction of the base surface has to be reversed prior to importing it (generally, this means reversing the
order of coordinate tuples).

b. The IS_REVERSE flag has to be set to “1” for the corresponding entry in the SURFACE_GEOMETRY table.

c. If the base surface is an aggregate, then steps (a) and (b) have to be recursively applied for all of its surface
members.

2. If the OrientableSurface is identical to its base surface (i.e., if its orientation is “+), then the base surface can
be written to the SURFACE_GEOMETRY table without taking any further action. The IS_REVERSE flag has
to be set to “0” (which is also the default value).

3. Please note, that it is not sufficient to just rely on the gml:orientation attribute of an OrientableSurface in order
to determine its orientation since OrientableSurfaces may be arbitrarily nested.

Flipping the direction of the base surface in step (la) is essential in order to guarantee that the objects stored within
the GEOMETRY column are always correctly oriented. This enables applications to just access the GEOMETRY
column without having to interpret further attributes of the SURFACE_GEOMETRY table. For example, in the case
of a viewer application this allows for a fast rendering of a virtual 3d city scene.

When exporting CityGML instance documents, the IS_REVERSE flag can be used to rebuild OrientableSurface in
the following way:

1. If the IS_REVERSE flag is set to “1” for a table entry, the exporter routine has to reverse the direction of the
corresponding surface object prior to exporting it (again, this means reversing the order of coordinate tuples).

99 99

2. The surface object has to be wrapped by a gml:OrientableSurface object with gml:orientation=

3. If the surface object is an aggregate, its surface members having the same value for the IS_REVERSE flag
may not be embraced by another OrientableSurface. However, if the IS_REVERSE value changes, e.g.,
from “1” for the aggregate to “0” for the surface member, also the surface member has to be embraced by a
gml:OrientableSurface according to (2). Since there might be nested structures of arbitrary depth this third rule
has to be applied recursively.

Like with the IS_XLINK flag, the Importer/Exporter tool provides a reference implementation of the IS_REVERSE
flag.

2.7.3.4 Appearance Model

APPEARANCE, APPEARANCE_SEQ

The table APPEARANCE contains information about the surface data of objects (attribute DESCRIPTION), its cate-
gory is stored in attribute THEME. Since each city model or city object may store its own appearance data, the table
APPEARANCE is related to the tables for the base classes CityObject and CityModel by two foreign keys which may
be used alternatively. The classes Appearance and _SurfaceData represent features, which can be referenced by GML
identifiers. For this reason, the attributes GMLID and GMLID_CODESPACE were added to the corresponding tables.

2.7. Relational database schema 77

3D City Database for CityGML, Release 4.1

=] ables
CITYMODEL
D : NUMBER
SHLID : VARCHAR2(256)
S1LID_CODESPACE : VARCHAR2(1000)
AN | VARCHAR2(1000)
\AHE_CODESPACE : VARCHAR2(4000)
SESCRIPTION : VARCHAR2(4000)

TERMINATION_DATE : TIVESTAMP VMITH TIME ZONE
_AST_MODIFICATION_DATE : TMESTAMP WITH TIME ZONE
UPDATING_PERSON ; VARCHAR2(256)
REASCN_FOR_UPDATE : ARCHAR2(4000)

_INEAGE : VARCHAR2(256)

<PIGCITYMODEL_PK: ID

]

D: NUMBER

SMLD: VARCHAR2(256)
SMLD_CODESPACE : VARCHAR2(1000)
AME ; VARCHAR2(1000)
\AME_CODESPACE : VARCHAR2(4000)
SESCRIPTION : VARCHAR2(4000)
S_FRONT : NUMBER(1, 0)
OBJECTCLASS ID : NUMBER
3D_SHINNESS : BNARY_DOUBLE
#3D_TRANSPARENCY : BINARY _DOUBLE
#3D_AMBIENT_INTENSITY : BINARY_DOUBLE
¥3D_SPECULAR_COLOR: VARCHAR2(256)
%3D_DIFFUSE_COLOR : VARCHAR2(258)
X3D_EMISSIVE_COLOR : VARCHAR2(256)
3D_IS_SMOOTH : NUMBER(1, 0)
TEX_IMAGE_ID : NUMBER
TEX_TEXTURE_TYPE : VARCHAR2(256)
TEX_WRAP_IMODE : VARCHAR2(258)
TEX_BORDER_COLOR : VARCHAR2(256)
GT_PREFER_WORLDFILE - NUMBER(1, 0)
ST_ORENTATION : VARCHAR2(256)
GT_REFERENCE_POINT : MDSYS SDO_GEOMETRY

atables
SURFACE DATA

<PItSURFACE_DATA_PK: ID
<FItSURFACE_DATA_OBJCLASS_FK: OBJECTCLASS_ID
cFI=SURFACE_DATA_TEX_IMAGE_FK: TEX_IMAGE_D

0.1

=] aables
TEX_MAGE

D : NUMBER

TEX_IMAGE_URI: YARCHAR2(4000)

TEX_IMAGE_DATA : BLOB

TEX MME_TYPE : VARCHAR2(256)

TEX_MME_TYPE_CODESPACE : VARCHAR2(4000)

CPICSTEX_IMAGE _PH: D

= atables
CITYOBJECT
1D : NUMBER
OBJECTCLASS_ID : NUMBER
GMLID : VARCHAR2(256)
GMLID_CODESPACE : VARCHAR2(1000)
NAME : VARCHAR2(1000)
. NAWE_CODESPACE : VARCHAR2(4000)
1 DESCRIPTION : VARCHAR2(4000)
® ENVELOPE - MDSYS SDO_GEOMETRY
<PICITYOBJECT_MEMBER_PK: CITYMODEL ID, CITYOBJECT_ID CREATION_DATE : TIMESTAP WITH TIME ZONE
«FK>CITYOBJECT_MEMBER_FK: CITYOBJECT_ID TERMINATION_DATE : TIMESTAMP VITH TIME ZONE
<FI=CITYOBJECT_MEMBER_FK1: CITYMODEL_ID RELATIVE_TO_TERRAIN : VARCHAR2(258)
RELATIVE_TO_WATER : VARCHAR2(256)
LAST_MEDFICATION_DATE : TMESTANP WITH TIME ZONE
UPDATING_PERSCN : VARCHAR2(256!
REASON_FOR_UPDATE ; VARCHAR2(4000)
LINEAGE : VARCHAR2(258)
%ML_SOLRCE: CLOB

= adables
CITYOBUECT_MEMBER
CITYMODEL_D:: NUMBER:
CITYOBUECT_D : NUMBER:

0.1
-

<PIGCITYOBJECT_PH: ID
<FIGCITYOBJECT_OBJECTCLASS_FK: OBJECTCLASS_D

= aables
APPEAR_TO_SURFACE_DATA

SURFACE_DATA 1D NUVEER:

APPEARARNCE ID - NUMBER]

atables
APPEARANCE
D : NUMBER
* |GMLID : VARCHAR2(256)
4 T |GMUD_CODESPACE : VARCHAR2(1000)
NAWE : VARCHAR2(1000)
<Pk APPEAR_TO_SURFACE_DATA_PK: SURFACE_DATA _ID, APPEARANCE_ID NAME_CODESPACE : VARCHAR2(4000)
‘«FI» APPEAR_TQ_SURFACE_DATA_FK: SURFACE_DATA_ID DESCRIPTION : VARCHAR2(4000)
<FI6a APPEAR_TQ_SURFACE_DATA_FK1: APPEARANCE_D THEME : \VARCHAR2(256)
. CITYMODEL 1D : NUMBER

Icmomecun NUMBER

<PH>APPEARANCE _PK: ID
<FH APPEARANCE _CIT'YMODEL_FK: CITYMODEL_D
<FH>APPEARANCE_CITYOBJECT_FK: CITYOBJECT_ID

= atables]
TEXTUREPARAN
SLRFACE_GEOMETRY_ID : NUMBER 1D NUMBER
1 + |IS_TEXTLRE_PARAMETRIZATION : NUMBER(1, 0) GHILID : VARCHAR2(256)
e ORLD_TO_TEXTURE: VARCHAR2(1000) (GHILID_CODESPACE : VARCHAR2(1000)
TEXTURE_COORDINATES : MDSYS.SDO_GEOMETRY PARENT_ID : NUMEER
SURFACE_DATA_ID : NUVBER ROOT_ID : NUMBER
I15_S0LID : NUMBER(1, 0)
1S_COMPOSITE : NUMEER(1, 0)
IS_TRIANGLLATED : NUMBER(1, 0)
IS_XLINK : NUMBER(1, Q) .
1S_REVERSE : NUVBER(1, 0
GEOMETRY : MDSYS SDO_GEOMETRY
SOLID_GEOMETRY : MDSYS.SD0_GEOMETRY
IMPLICIT_GEOMETRY : MDSYS.SDO_GEOMETRY
CITYOBJECT ID: NUMEER

atables
SURFACE_GEOMETRY

e — e

«PK» TEXTUREPARAM_PK: SURFACE_GEOMETRY_ID, SURFACE_DATA _ID
<F 16 TEXPARAM_GEOM_FK; SURFACE_GEOVETRY_ID
«F K TEXPARAM_SURFACE_DATA_FK: SURFACE_DATA_ID

«PH>SURFACE_GEOMETRY_PH: ID
<FH>SURFACE_GEOM_CITYOBJ_FK: CITYOBJECT_ID
<FH>SURFACE_GEOM_PARENT_FI PARENT_ID
«FH>SURFACE_GEOM_ROOT_Fit: ROOT_ID

0. |0

Fig. 2.33: Appearance database schema

78

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

SURFACE_DATA, TEX_IMAGE, APPEAR_TO_SURFACE_DATA

An appearance is composed of data for each surface geometry object. Information on the data types and its appearance
are stored in table SURFACE_DATA.

IS_FRONT determines the side a surface data object applies to (IS_FRONT=1: front face IS_FRONT=0: back face
of a surface data object). The OBJECTCLASS_ID column denotes if materials or textures are used for the specific
object (values: X3DMaterial, Texture or GeoreferencedTexture). Materials are specified by the attributes X3D_xxx
which define its graphic representation. Details on using georeferenced textures, such as orientation and reference
point, are contained in attributes GT_xxx. See Section 2.6.3 for more information on SURFACE_DATA attributes or
the CityGML specification (cf. [GKNH2012], p. 33-45) which explains the texture mapping process in detail.

Raster-based 2D textures are stored in table TEX_IMAGE. The name of the corresponding images for example
is specified by the attribute TEX_IMAGE_URI. The texture image can be stored within this table in the attribute
TEX_IMAGE_DATA using the BLOB data type under Oracle and the BYTEA data type under PostgreSQL.

Table APPEAR_TO_SURFACE_DATA represents the interrelationship between appearances and surfaces for differ-
ent themes.

TEXTUREPARAM

Attributes for mapping textures to objects (point list or transformation matrix) which are defined by the CityGML
classes _TextureParameterization, TexCoordList, and TexCoordGen are stored in the table TEXTUREPARAM.

10,5,4

0,4

N

0,0 roof.png 1,0

Fig. 2.34: Simple example explaining texture mapping using texture coordinates

Table 2.10: Example for table TEXTUREPARAM

SURFACE_ IS_TEXTURE WORLD_TO TEXTURE_ SURFACE_

GEOMETRY_ID _TEXTURE COORDINATES DATA_ID
_PARAMETRIZATION

7 1 NULL GEOMETRY 20

Texture coordinates are applicable to polygonal surfaces, whose boundaries are described by a closed linear ring (last
coordinate is equal to first). Coordinates are stored with a geometry data type. The WORLD_TO_TEXTURE attribute
defines a transformation matrix from a location in world space to texture space. For more details see the CityGML
Implementation Specification [GKNH2012].

2.7. Relational database schema 79

3D City Database for CityGML, Release 4.1

Fig. 2.35: Visualisation of a simple building in LoD1 and LoD2 using the appearance model. Two themes are defined
for the building and the surrounding terrain: (a) building in summertime and (b) building in wintertime

Six surface representations are listed in table SURFACE_DATA (cf. Fig. 2.41). First of all, a homogeneous material is
defined (ID=1), represented by a 3-component (RGB) colour value which will be used for both appearances (summer
and winter). This also applies to a general side fagade texture (ID=3, Fig. 2.38 right) which is repeated (wrapped) to
fill the entire surface. For each of the front side, the back side and the ground two images are available: parameterized
ones for the sides (Fig. 2.38 left and middle) and georeferenced ones for the ground and the roof surfaces (Fig. 2.37).
The information of textures is stored in a separate table TEX_IMAGE. The coordinates for mapping the textures to the
object are stored in table TEXTUREPARAM. For the general side texture (SURFACE_DATA_ID=3) five coordinate
pairs are needed to define a closed ring (here: rectangle). Table SURFACE_GEOMETRY contains the information of
all geometry parts that form the building and its appropriate 3D coordinates.

See the following page for an example of the storage of appearances in the city database. Fig. 2.38 and Fig. 2.37 show
the images used for texturing a building in LoD2. In LoD1, a material definition is used to define the wall colors of
the building.

Fig. 2.39 to Fig. 2.43 show a combination of tables representing the building’s textures. There are different images
available for summer and winter resulting in two themes: Summer and Winter. The tuples within the tables are
color-coded according to their relation to the respective theme:

 Green: only summer related data
* Light-grey: only winter related data
* Orange: both summer and winter related data

Fig. 2.36 shows the LoD2 representation of summer appearances (theme Summer).

2.7.3.5 Building Model

BUILDING

The building model, described in Section 2.6.4.2 at the conceptual level, is realised by the tables shown in Fig. 2.44.
The three CityGML classes AbstractBuilding, Building and BuildingPart are merged into the single table BUILDING.
They can be distinguished on behalf of the OBJECTCLASS_ID. The subclass relationship with CITYOBJECT arises
from using identical IDs, i.e. for each tuple in BUILDING there must exist a tuple within CITYOBJECT with
the same ID.

80 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Fig. 2.36: Surface geometries for the building in LoD2

ground
winter.png

SURFACE_DATA_ID =5

ground

| | summer.png

SURFACE_DATA_ID = 8

Fig. 2.37: Images for georeferenced textures. The image ground_winter.png is assigned to the terrain and the roof
surfaces of the building both in LoD1 and LoD2 within the winter theme (a), ground_summer.png within the summer
theme (b)

2.7. Relational database schema 81

3D City Database for CityGML, Release 4.1

summer.png winter.png summer & winter

SURFACE_DATA_ID = 4 SURFACE_DATA_ID = 6 SURFACE_DATA_ID = 3

Fig. 2.38: Images for parameterized textures

APPEARANCE
ID | GMLID | THEME CITYMODEL_ID CITYOBJECT_ID
2 | App2 | Winter 1000

Fig. 2.39: Excerpt of table APEARANCE, The relation to the building feature is given by the foreign key CITYOB-
JECT_ID

APPEAR_TO_SURFACE_DATA

APPEARANCE_ID | SURFACE_DATA_ID| COMMENTS

LoD1 S

LoD1 W

LoD2 ground/roof S
LoD2 facade S
LoD2 front/back S
LoD2 ground/roof
w

LoD2 facade W
LoD2 front/back W

Fig. 2.40: APPEAR_TO_SURFACE table

[SURFACE_DATA |
IS_FRONT OBJECTCLASS_ID X3D_DIFFUSE_COLOR | TEX_IMAGE_ID TEX_WRAP_MODE GT_ORIENTATION GT_REFEREMCE_POINT

Fig. 2.41: Excerpt of table SURFACE_DATA table

82 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

TEX_IMAGE

TEX_IMAGE_DATA TEX_IMAGE_URI

BLOB...

Fig. 2.42: Excerpt of table TEX_IMAGE table

TEXTUREPARAM
SURFACE_ IS_TEXTURE_ WORLD_TO_
GEOMETRY_ID PARA-METRIZATION TEXTURE

SURFACE_
DATA_ID

TEXTURE_COORDINATES COMMENTS

LoD 2 ground S
LoD 2 roof left S
LoD 2 roof right S
LoD 2 front S

LoD 2 back S

LoD 2 facade left S/W

LoD 2 facade right S/W
30 0 NULL NULL 5 LoD2 ground W
16 0 NULL NULL 5 LoD 2 roof left W
17 0 NULL NULL 5 LoD 2 roof right W
13 1 NULL GEOMETRY 6 LoD 2 front W
1 6

15 NULL GEOMETRY LoD 2 back W

LoD1 walls S/W
LoD1 roof S/W

Fig. 2.43: TEXTUREPARAM Table

2.7. Relational database schema 83

3D City Database for CityGML, Release 4.1

Fig. 2.44: Building database schema

84 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.11: Tree-like structure for recursive decomposition of buildings

1D BUILDING BUILDING_ Lobo_ | ** Loni_ |- LOD4_

FOOT SOLID_
PARENT_[IROOT_ID MULTISUR ID
PRINT_ID
FACE_ID

1 NULL 1 10 NULL NULL

4 2 1 NULL NULL 400

5 2 1 NULL NULL 500

The component hierarchy within a building is realized by the foreign key BUILDING_PARENT_ID which refers
to the superordinate building (aggregate) and contains NULL, if such does not exist. This way, a tree-like structure
arises also for building aggregates. BUILDING_PARENT_ID points at the predecessor in the tree. The foreign key
BUILDING_ROOT_ID refers directly to the top level (root) of a building tree. In order to select all parts forming a
building one only has to select those with the same BUILDING_ROOT_ID (cf. Table 2.11).

The meaning and the name of most fields are identical to those of the attributes in the UML diagram (cf. Fig. 2.7).
Like for CityObjectGroups there are additional _CODESPACE columns for the attributes class, function and usage.
A _CODESPACE column is also added for the roofType attribute as it is specified as gml:CodeType in CityGML. For
every attribute including measure information like measuredHeight or storeyHeightsAboveGround etc. an additional
_UNIT column is provided to specify the unit of measurement.

Geometry is represented by several foreign keys LODO_FOOTPRINT_ID, LODO_ROOFPRINT_ID,
LODx_MULTI_SURFACE_ID (1 x 4), and LODx_SOLID_ID (1 x 4) which refer to entries in the SUR-
FACE_GEOMETRY table and represent each LoD’s surface geometry.

Optionally the geometry of the terrain intersection curve is stored in the attribute LODx_TERRAIN_INTERSECTION
(1 x 4) using database geometry type (see Table 2.12). Additional line-typed building elements such as antennas are
optionally modelled by the attribute LODx_MULTI_CURVE (1 x 4, using the same database geometry like for terrain

2.7. Relational database schema 85

3D City Database for CityGML, Release 4.1

intersection curves).

Table 2.12: Storage of composite line string geometry

Oracle

PostGIS

- SDO_GTYPE must have the type
MultiCurve/MultiLine, i.e. a composite
geometry of different line string segments

- Only MULTILINESTRING Z is allowed, i.e. a
composite geometry of different line string
segments with 3D coordinates

with 3D coordinates (SDO_GTYPE = 3006)
- The geometry type MULTICURVE is not used as
- SDO_ETYPE must be 1 (straight line segments) CityGML does not allow geometry with arcs
as curved geometries are not allowed in CityGML

and SDO_INTERPRETATION must be 2

THEMATIC_SURFACE

The table THEMATIC_SURFACE represents thematic boundary features. CityGML class _BoundarySurface has a
number of concrete subclasses representing different types of surfaces. One possibility would be to represent each of
these classes by its own table. Here, we choose the approach to create one table representing all those classes. No own
tables for the subclasses of _BoundarySurface were created in the relational schema; instead, the type of the boundary
surface is given by the foreign key OBJECTCLASS_ID in the table THEMATIC_SURFACE. Allowed integer values:

* 30 (CeilingSurface)

* 31 (InteriorWallSurface)
* 32 (FloorSurface)

* 33 (RoofSurface)

e 34 (WallSurface)

* 35 (GroundSurface)

¢ 36 (ClosureSurface)

¢ 60 (OuterCeilingSurface)
* 61 (OuterFloorSurface)

If a CityGML ADE is used that extends any of the classes named above, further values for OBJECTCLASS_ID may
be added by the ADE manager. Their concrete numbers depend on the ADE registration (cf. Section 3.9.3.3).

The aggregation relation between buildings and the corresponding boundary surfaces results from the foreign
key BUILDING_ID of the table THEMATIC_SURFACE which refers to the ID of the respective building. The
same applies to references between surfaces of building installations (BUILDING_INSTALLATION_ID) and rooms
(ROOML_ID). Thematic surfaces and the corresponding parent feature should share their geometry: the geometry
should be defined only once and be used conjointly as XLinks. The SURFACE_GEOMETRY, which for example
geometrically defines a roof, should at the same time be a part of the volume geometry of the parent feature the roof
belongs to.

Example:

86 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

In Fig. 2.45, a building geometry is shown consisting of several surface geometries enclosing the outer building shell.
Please note that the left wall (ID 5) is composed of two polygons (IDs 11 and 12) and that the roof is split into a left and
aright part (IDs 20 and 21) each of which again consists of two polygons, the roof surface and an overhanging part. In
the SURFACE_GEOMETRY table (cf. Table 2.13), the attribute [S_COMPOSITE is set to 1 for the tuples with IDs 5,
20 and 21 characterising them as composite surfaces. The surface geometries are semantically classified as roof, wall or
ground surface by adding an entry into the THEMATIC_SURFACE table and linking this entry with the corresponding
geometry tuple in SURFACE_GEOMETRY. In Table 2.14, an excerpt of the THEMATIC_SURFACE table is depicted.
The tuple with ID 70 represents a RoofSurface by setting the OBJECTCLASS_ID attribute to the value 33. For its
geometry, the tuple references ID 21 in the SURFACE_GEOMETRY table via the LOD2_MULTI_SURFACE_ID
attribute.

Fig. 2.45: LoD2 building with roof overhangs, highlighted in red

2.7. Relational database schema 87

3D City Database for CityGML, Release 4.1

Table 2.13: Excerpt of table SURFACE_GEOMETRY. Geometry objects
are stored as database geometry datatype

ID GMLID PARENT_ | ROOT_ IS_ IS_ IS_ GEOMETR
ID ID SOLID COMPO XLINK
SITE

3 UUID_LoD2 NULL 3 0 0 0 NULL

5 Left_Wall 3 3 0 1 0 NULL

11 Left Wall_1 5 3 0 0 0 Geometry
comp (5-1)
surface 11

12 Left Wall_2 5 3 0 0 0 Geometry
comp (5-2)
surface 12

13 Front 3 3 0 0 0 Geometry
surface 13

14 Right_Wall | 3 3 0 0 0 Geometry
surface 14

15 Back 3 3 0 0 0 Geometry
surface 15

16 Roof_part_ 21 3 0 0 1 Geometry
surface 16

17 Roof_part_2 20 3 0 0 1 Geometry
surface 17

18 Overhang_1 21 3 0 0 0 Geometry
of

88 Chapter 2. 3D City'Pdeilsase

18

3D City Database for CityGML, Release 4.1

Table 2.14: Excerpt of table THEMATIC_SURFACE (excerpt)

ID OBJECTCLASSUILDING_[pROOMID |y 61 vormn
SURFACE_ID
70 - 33 i NULL 21

In addition to thematic boundary surfaces, assume that we also want to represent the building volume as separate
solid geometry that is stored with the building itself. For this purpose, another tuple with ID 30 is added to the
SURFACE_GEOMETRY table whose IS_SOLID attribute is set to 1. This tuple is referenced from BUILDING using
the LOD2_SOLID_ID attribute (cf. Table 2.15).

According to the CityGML specification, the surface geometries forming the solid geometry shall reference the ge-
ometries of the thematic boundary surfaces using GML’s XLink mechanism. Therefore, the referenced geometries
have to be copied and inserted as new tuples into SURFACE_GEOMETRY. Moreover, the IS_XLINK flag has to be
set to 1 for the referenced geometries and their copies (see Section 2.7.3.3 for details). In Table 2.13, this is illustrated
for the geometries with ID 32 and 33, which are copies of the tuples with ID 16 and 17 respectively. Note, that the
overhanging roof parts (IDs 18 and 19) are not referenced by the solid geometry, because they are dangling surfaces
and not part of the volume.

Table 2.15: Excerpt of table BUILDING (excerpt)

ID BUILDING_ROOT_ID LOD1_SOLID I®D2 _SOLID ID

1 1 NULL 30

BUILDING_INSTALLATION

The UML classes Buildinglnstallation and IntBuildingInstallation are realized by the single table BUILD-
ING_INSTALLATION. Internal and external objects are distinguished by the attribute OBEJCTCLASS_ID (exter-
nal 27, internal 28). The relation to the corresponding parent feature arises from the foreign key BUILDING_ID or
ROOM_ID, whereas the surface based geometry in LoD 2 to 4 is given via the foreign keys LODx_BREP_ID (2 x 4)

2.7. Relational database schema 89

3D City Database for CityGML, Release 4.1

referring to the table SURFACE_GEOMETRY.

Additional point- or line-typed building installation elements such as antennas can be modelled by the attribute
LODx_OTHER_GEOM (2 x 4) using the database geometry type (any GTYPE, ETYPE etc. in Oracle and
GEOMETRY Z in PostGIS). Since CityGML 2.0.0 building installations can also be represented by using pro-
totypes which are stored as library objects implicitly. The information needed for mapping prototype objects to
buildings consists of a base point geometry (LODx_IMPLICIT_REF_POINT (2 x 4)), a transformation matrix
(LODx_IMPLICIT_TRANSFORMATION (2 x 4)), which is stored as a string, and a foreign key reference to the
IMPLICIT_GEOMETRY table (LODx_IMPLICIT_REP_ID (2 x 4)) where a reference to an explicit surface based
geometry in LoD 2 to 4 is saved.

OPENING

Openings (CityGML class Opening) are represented by the table OPENING and are only allowed in LoD3 and 4. No
individual tables are created for the subclasses. Instead, the differentiation is achieved by the foreign key OBJECT-
CLASS_ID which refers to the attribute ID of the (meta) table OBJECTCLASS. Valid integer values are 39 (Door)
and 38 (Window). If a CityGML ADE is used that extends any of the two classes Door or Window, further values for
OBJECTCLASS_ID may be added by the ADE manager. Their concrete numbers depend on the ADE registration
(cf. Section 3.9.3.3).

Table OPENING_TO_THEM_SURFACE associates an opening ID in table OPENING with a thematic surface ID in
table THEMATIC_SURFACE representing the m:n relation between both tables. An address can be assigned to a door
(table OPENING) by the foreign key ADDRESS_ID in the table OPENING. Furthermore, addresses may be assigned
to buildings (see table ADDRESS for detailed information).

Like with building installations openings can be modelled via implicit geometry since CityGML 2.0.0. Thus,
the OPENING table does contain the columns LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT and
LODx_IMPLICIT_TRANSFORMATION, too.

ROOM

Room objects are allowed in LoD4 only. Therefore, the only keys LOD4_MULTI_SURFACE_ID and
LOD4_SOLID_ID are referring to the table SURFACE_GEOMETRY. Additionally, the foreign keys to tables BUILD-
ING and CITYOBIJECT are necessary to map the relationship to these tables.

BUILDING_FURNITURE

As rooms may be equipped with furniture (chairs, wardrobes, etc.), a foreign key referencing to ROOM_ID is manda-
tory. The geometry of furniture objects can be described explicitly using the attribute LOD4_OTHER_GEOM rep-
resenting the point- or line-typed entities or using the foreign key LOD4_BREP_ID referring to the table SUR-
FACE_GEOMETRY. Alternatively, the geometry of furniture objects may be represented by using prototypes (Im-
plicitGeometry) which are stored as library objects. Again, the information needed for mapping prototype objects to
rooms consists of a base point, a transformation matrix and a reference to the IMPLICIT_GEOMETRY table.

ADDRESS, ADDRESS_TO_BUILDING, and ADDRESS_SEQ

Addresses are realized by the table ADDRESS. The m:n relation with buildings arises from the table
ADRESS_TO_BUILDING which associates a building ID and an address ID. An address can also be assigned to
a door (table OPENING) by the foreign key ADDRESS_ID in the table OPENING. The same applies to addresses of
bridges (incl. a table ADRESS_TO_BRIDGE) and bridge openings.

The next available ID for the table ADDRESS is provided by the sequence ADDRESS_SEQ.

2.7.3.6 Bridge Model

The bridge model, described in paragraph Section 2.6.4.3 at the conceptual level, is realised by the tables shown in Fig.
2.46. The relational schema is identical to the building schema for the most parts except for the naming. Please, refer
to the explanation of the building schema on the previous pages for a complete understanding. The main differences
to the building schema are the following:

920 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Fig. 2.46: Bridge database schema

2.7. Relational database schema 91

3D City Database for CityGML, Release 4.1

* Bridges cannot be modelled in LoD 0. Therefore, no corresponding columns appear in the BRIDGE table.

» CityGML features belonging to bridges, such as boundary surfaces, installations, openings, rooms and furniture,
are mapped to separate specific tables and are not stored in already existent ones (e.g. THEMATIC_SURFACE,
OPENING, ROOM). Thus, values in OBJECTCLASS_ID columns are different as well. The reason for this is
to provide a schema that is as close to the UML model as possible. There are slight differences between the
building and the bridge model that would lead to ambiguous references e.g. a boundary surface of the building
namespace cannot reference to a bridge construction element.

¢ OBJECTCLASS_ID of table BRIDGE_THEMATIC_SURFACE allows the values:
— 68 (BridgeCeilingSurface),
— 69 (InteriorBridgeWallSurface)
— 70 (BridgeFloorSurface),
— 71 (BridgeRoofSurface),
— 72 (BridgeWallSurface),
— 73 (BridgeGroundSurface),
— 74 (BridgeClosureSurface),
— 75 (OuterBridgeCeilingSurface),
— 76 (OuterBridgeFloorSurface).

If a CityGML ADE is used that extends any of the classes named above, further values for OBJECT-
CLASS_ID may be added by the ADE manager. Their concrete numbers depend on the ADE registration
(cf. Section 3.9.3.3).

e In the BRIDGE_INSTALLATION table external bridge installations can be identified by the OBEJCT-
CLASS_ID 65 and internal ones by 66.

* The CityGML class BridgeConstructionElement is represented by the table BRIDGE_CONSTR_ELEMENT.
Its schema is analogue to the BRIDGE_INSTALLATION table for the most parts. The relation to the corre-
sponding bridge results from the foreign key BRIDGE_ID. Explicit and implicit geometry or a decomposition
through boundary surfaces is possible. Additionally, terrain intersections curves of construction elements can
also be stored.

e The OBJECTCLASS_ID column in table BRIDGE_OPENING can be of integer value 79 (BridgeDoor) or
78 (BridgeWindow). They are associated to entries in the table BRIDGE_THEMATIC_SURFACE via the
BRIDGE_OPEN_TO_THEM_SREF link table. If a CityGML ADE is used that extends any of the two classes
BridgeDoor or BridgeWindow, further values for OBJECTCLASS_ID may be added by the ADE manager.
Their concrete numbers depend on the ADE registration (cf. Section 3.9.3.3). Like openings of building, bridge
openings can have addresses assigned to it.

2.7.3.7 CityFurniture Model

The CityGML feature class CityFurniture and its attributes specified in the UML diagram (Fig. 2.13) are directly
mapped the CITY_FURNITURE table and its corresponding columns.

The geometry of city furniture objects is represented either as a surface-based geometry object (LODx_BREP_ID,
where 1 x 4) related to table SURFACE_GEOMETRY, as a point- or line-typed object (LODx_OTHER_GEOM,
where 1 x 4) or as implicit geometry LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT,
LODx_IMPLICIT_TRANSFORMATION with 1 x 4). Optionally terrain intersection curves can be stored for city
furniture objects.

92 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

= atables
CITY_FURNITURE

D : NUMBER

OBJECTCLASS_D : HUMBER

CLASS : VARCHARZ(256)

CLASS_CODESPACE - VARCHAR2(4000)

FUNCTION - ' ARCHAR2(1000)

FUNCTION_CODESPACE : VARCHAR2(4000)

USAGE : VARCHAR2(1000)

USAGE_CODESPACE : ARCHAR2(4000)

LOD1_TERRAIN_NTERSECTION : MDSYS SDO_GEOMETRY

LOD2_TERRAIN_NTERSECTION : MDSYS SDO_GEOMETRY

LOD3_TERRAIN_NTERSECTION : MDSYS SDO_GEOMETRY

LOD4_TERRAIN_NTERSECTION - MDSYS SDO_GEOMETRY

LOD1_BREP_ID : NUMBER

LOD2_BREP_ID : NUMBER

LOD3_BREP_ID : NUMBER

LOD4_BREP_ID : NUMBER

LOD1_OTHER_GECM : MDSYS .SDO_GEOMETRY

LOD2_OTHER_GEOM : MDS ¥S.SDO_GEOMETRY

LOD3_OTHER_GEOM : MDS'YS.SDO_GEOMETRY

LOD4_OTHER_GEOM - MDS'YS SDO_GEOMETRY

LODA_IMPLICIT_REP_ID : NUMBER

LOD2_IMPLICIT_REP_ID : NUMBER

LOD3_IMPLICIT_REP_ID : NUMBER

LOD4_IMPLICIT_REP_ID : NUMBER

LOD1_IMPLICIT_REF_POINT : MDSYS SDO_GEOMETRY

LOD2_IMPLICIT_REF_POINT : MDSY'S SDO_GEOMETRY

LOD3_IMPLICIT_REF_POINT : MDS'YS SDO_GEOMETRY

LOD4_IMPLICIT_REF_POINT : MDS'YS SDO_GEOMETRY

LOD1_IMPLICIT_TRANSFORMATION : ' ARCHAR2(1000)

LOD2_IMPLICIT_TRANSFORMATION : ' ARCHAR2(1000)

LOD3_IMPLICIT_TRANSFORMATION : ARCHAR2(1000)

LOD4_IMPLICIT_TRANSFORMATION : ARCHAR2(1000)

<PHsCITY_FURNITURE_PH: ID
<FI=CITY_FURN_CITYOBJ_FH: ID
<FI=CITY_FURN_LOD1BREP_FIK: LODM_BREP_ID
<FIsCITY_FURN_LOD1IMPL_FK: LOD1_IMPLICIT_REP_D
<FIsCITY_FURN_LOD2BREP_FIC: LOD2_BREP_ID
<FICCITY_FURN_LOD2IMPL_FK: LOD2_IMPLICIT_REP_ID
<FIsCITY_FURN_LOD3BREP_FIC: LOD3_BREP_D
<FIsCITY_FURN_LOD3IMPL_FK: LOD3_MPLICIT_REP_ID
<FI=CITY_FURN_LOD4BREP_FI; LOD4_BREP_D
<FI=CITY_FURN_LOD4IMPL_FK: LOD4_IMPLICIT_REP_ID
<FI=CITY_FURN_OBJCLASS_FK: OBJECTCLASS_D

N . .
0.1 0.1 0.1 0.1
atables
IMPLICIT _GECMETRY

1D : MUMBER

MIME_TYPE : 'V ARCHARZ(256)
REFERENCE_TO_LIBRAR™ .V ARCHARZ(4000)
LIERARY_OBJECT : BLOB

RELATIVE_BREP_ID : NUMBER
RELATIVE_OTHER_GEOM : MDSYS .SDO_GEOMETRY

«PKeIMPLICIT_GEOMETRY _PK: ID
«FKsIMPLICIT_GEOM_BREP_FK: RELATIVE_BREP_ID

0.1

= aables

CITYOBJECT
D : NUMBER
OBJECTCLASS_ID : NUMBER
GMLID : VARCHAR2(256)
GMLID_CODESPACE : VARCHAR2(1000)
NAME - VARCHAR2(1000)
NAME_CODESPACE : VARCHAR2(4000)
DESCRIPTION : YARCHAR2(4000)
ENVELGPE : MDSYS SDO_GEOMETRY
CREATION_DATE : TIMESTAMP VITH TIME ZONE
TERMINATION_DATE : TIMESTAMP WITH TIME ZONE
RELATIVE_TO_TERRAIN : VARCHAR2(258)
RELATIVE_TO_WATER : VARCHAR2(256)
LAST_MODIFICATION_DATE : TIMESTAMP WITH TIME ZONE
UPDATING_PERSON : VARCHAR2(256)
REASON_FOR_UPDATE : ARCHAR2(4000)
LINEAGE : ' ARCHAR2(256)
¥ML_SOURCE : CLOB

«PH=CITYOBJECT_PK: ID
«FR=CITYOBJECT_OBJECTCLASS _FK: OBJECTCLASS_ID

0.1 0.1 0.1 0.1 *
. -

] stables

SURFACE_GECMETRY

ID: HUMBER
GMLID : VARCHAR2(256)

GMLID_CODESPACE * VARCHAR2(1000)
PARENT_ID : NUMBER

ROOT_ID : HUMBER

15 SOLID : NUMBER(1, 0)

15_COMPOSITE : NUMBER(1, 0)
I15_TRIANGULATED : NUMBER(1, 0

1S_XLINK : NUMBER{1, 0]

15_REVERSE : NUMBER(1, 0)

GEOMETR'Y - MDS'Y'S SDO_GEOMETR'Y
SOLID_GEOMETRY : MDSYS SDO_GEOMETRY
IMPLICIT_GEOMETR' : MDS'YS.500_GEOMETRY
CITYOBJECT ID : NUMBER

<PI»SURFACE_GEOMETRY _PK: ID
<FI(sSURFACE_GEOM_CITYOBJ_FK: CITYOBJECT_ID
<FI>SURFACE_GEOM_PARENT_FK: PARENT_D
<FI»SURFACE_GEOM_ROOT_FK: ROOT_ID

0.1 0.1

Fig. 2.47: CityFurniture database schema

2.7. Relational database schema

93

3D City Database for CityGML, Release 4.1

2.7.3.8 Generic Objects and Attributes

3D city models will most likely contain attributes, which are not explicitly modelled in CityGML. Moreover, there
may be 3D objects that are not covered by the thematic classes of CityGML. Generic objects and attributes help to
support the storage of such data.

GENERIC_CITYOBJECT

For generic objects the full variety of different geometrical representations known from other tables is of-
fered. Explicit (LODx_BREP_ID, LODx_OTHER_GEOM) and implicit geometry (LODx_IMPLICIT_REP_ID,
LODx_IMPLICIT_REF_POINT, LODx_IMPLICIT_TRANS-FORMATION) as well as terrain intersection curves
(LODx_TERRAIN_INTERSECTION) (all with 0 x 4).

CITYOBJECT_GENERICATTRIB, CITYOBJECT_GENERICATT_SEQ

The table CITYOBJECT_GENERICATTRIB is used to represent the concept of generic attributes. However, the
creation of a table for every type of attribute was omitted. Instead a single table CITYOBJECT_GENERICATTRIB
represents all types and the types are differentiated via the values of the attribute DATATYPE.

The table provides fields for every data type, but only one of those fields is relevant in each case. An overview of the
meaning of the entries in the field DATATYPE is given in Table 2.16. The relation between the generic attribute and
the corresponding CityObject is established by the foreign key CITYOBJECT_ID.

94 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

[z

tables
GENERIC_CITYOBJECT
ID : NUMBER

OBJECTCLASS ID : NUMBER

CLASS : VARCHAR2(256)

CLASS_CODESPACE : VARCHAR2(4000)

FUNCTION : VARCHAR2(1000)
FUNCTION_CODESPACE : v ARCHAR2(4000)

USAGE : VARCHARZ(1000)

USAGE_CODESPACE : VARCHAR2(4000)

LODO_TERRAIN_INTERSECTION
LOD1_TERRAIN_INTERSECTION
LOD2_TERRAIN_INTERSECTION
LOD3_TERRAIN_NTERSECTION

MDSYS SDO_GEOMETRY
MDSYS SDO_GEOMETRY
MDSY'S SDO_GEOMETRY
MDS'Y'S SDO_GEOMETRY

LOD4_TERRAIN_INTERSECTION : MDS¥S SDO_GEOMETRY
IUMBER

LODO_BREP_D : NI

LOD1_BREP_D : NUMB
LCD2_BREP_D : NUMB
LOD3_BREP_D : NUMB
LOD4_BREP_D : NUMB
LODO_OTHER_GEOM :
LOD1_OTHER_GEOM :
LOD2_OTHER_GEOM
LOD3_OTHER_GEOM
LOD4_OTHER_GEOM :

ER
ER
ER
ER
MDSYS.SDO_GEOMETRY
WDSY'S.SDO_GEOMETRY
WDSYS.SDO_GEOMETRY
WDSYS.SDO_GEOMETRY
MDSYS.SDO_GEOMETRY

= dables
CITYoB.ECT

D NUMBER

OBJECTCLASS ID : NUMBER

GILID : VARCHAR2(256)

GILID_CODESPACE : VARCHAR2(1000)

NAWE : VARCHAR2(1000)

NANE_CODESPACE : 'ARCHAR2(4000)

DESCRIPTION : VARCHAR2(4000)

ENVELOPE : MDSYS SDO_GEOMETRY

CREATION_DATE : TIMESTAMP WITH THME ZONE

TERMNATION_DATE : TIMESTAMP WITH TIME ZONE

RELATIVE_TO_TERRAIN : VARCHAR2(256)

RELATIVE_TO_WATER : VARCHAR2(256) 0.1
LAST_MODIFICATION_DATE : TIMESTAMP WITH TIME ZONE

UPDATING_PERSOM : \ARCHAR2{258)

LODO_MPLICIT_REP_ID : NUMBER
LOD1_IMPLICIT_REP_ID : NUWBER
LOD2_IMPLICIT_REP_ID : NUMBER
LOD3_IMPLICIT_REP_ID : NUMBER
LOD4_IMPLICIT_REP_ID : NUMBER
LODO_MPLICIT_REF_POINT : MDS'Y'S SDO_GEOMETRY
LOD1_IMPLICIT_REF_POINT : MDSY'S SDO_GEOMETRY
LOD2_IMPLICIT_REF_POINT : MDSY'S SDO_GEOMETRY
LOD3_IMPLICIT_REF_POINT : MDSY'S SDO_GEOMETRY
LOD4_MPLICIT_REF_POINT : MDS'Y'S SDO_GEOMETRY

LODO_IMPLICIT_TRANSFORMATION
LOD1_IWPLICIT_TRANSFORMATION
LODZ_IMPLICIT_TRANSFORMATION
LOD3_MPLICIT_TRANSFORMATION
LOD4_IMPLICIT_TRANSFORMATION

WVARCHAR2(1000)
WARCHAR2(1000)
WARCHAR2(1000)
WVARCHAR2(1000)
WARCHAR2(1000)

REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)
¥ML_SOURCE : CLOB

<PK=CITYOBJECT_PK: ID
<FKsCITYOBJECT_OBJECTCLASS Fi: OBJECTCLASS_ID

[]

ID': NUMBER
PARENT_GENATTRIE_ID : NUMBER

<tables
CITYOBJECT_GENERICATTRIE

ROOT_GENATTRIB_ID : NUMBER
ATTRNANME : VARCHAR2(256)
DATATYPE : NUMBER(1)

«PHsGENERIC_CITYOBJECT_PK: ID

STRVAL : VARCHAR2(4000)
INTVAL : NUMBER
REALVAL : NUWBER
URIVAL : YARCHAR2(4000)

<FK>GEN_OBJECT_CITYOBJECT_FK: I
<FI>GEN_OBJECT_LODDBREP_FK: LODD_BREP_ID
«Fi6> GEN_OBJECT_LODOIMPL _FI: LODO_IMPLICIT_REP_ID
&FH»GEN_OBJECT_LOD1BREP_FK: LOD1_BREF_D
FH>GEN_OBJECT_LOD1IMPL_FK: LOD1_IMPLICIT_REP_ID
<FH>GEN_OBJECT_LOD2BREP_FK: LOD2_BREP_ID
«Fi6>GEN_OBJECT_LOD2IMPL_FI: LODZ_IMPLICIT_REP_ID
«FH»GEN_OBJECT_LODIBREF_FK: LOD3_BREF_D
FH>GEN_OBJECT_LOD3IMPL_FK: LOD3_IMPLICIT_REP_ID
<FH>GEN_OBJECT_LODJBREP_FK: LOD4_BREP_ID
<FI5>GEN_OBJECT_LOD4IMPL_FI: LOD4_IMPLICIT_REP_ID
«FH>GEN_OBJECT_OBJCLASS_FK: OBJECTCLASS D

0 0.1 0.1 01 0.4
] «ctables
IMPLICIT_GEOMETR'Y
D : NUMBER

MIME_TYPE : VARCHAR2(256)
REFERENCE_TO_LIBRARY : Y ARCHAR2(4000)
LIBRARY_OBJECT : BLOB

RELATIVE_BREP_ID : NUMBER
RELATIVE_OTHER_GEOM : MDS¥S SDO_GECMETRY

aPHsIMPLICIT_GEOMETRY_PK: ID
<FaIMPLICIT_GEOM_BREP_FK: RELATIVE_BREP_ID

DATEVAL : TMESTAMP WITH TIME ZONE

UNIT : VARCHAR2(4000)
GENATTRIBSET_CCDESPACE : VARCHAR2({4000)
BLOBVAL : BLOB

GEOMVAL : MDSYS.SDO_GEOMETRY
SURFACE_GEOMETRY_ID : NUWBER
CITYOBJECT_ID : NUMBER

<PH=CITYOBJ_GENERICATTRIB_PK: ID
<FIGENERICATTRIB_CITYOBJ_FK: CITYOBJECT_D
«FKsGENERICATTRIB_GEOM_FK: SURFACE_GECMETRY_ID
<FK=GENERICATTRIB_PARENT_FK: PARENT_GENATTRIB_ID
<FK-GENERICATTRIB_ROOT_FK: ROOT_GENATTRIE_ID

. 04 |oa
0.1
= atables
SURFACE_GEOMETRY
D : NUMBER

GILID : VARCHAR2(256)
GHLID_CODESPACE : VARCHAR2(1000)
PARENT_ID: NUMBER

0.1 |ROOT_ID : NUMBER

15_SOLID : NUMBER(1, 0)

IS_COMPOSITE : NUMBER(1, 0)

IS_TRIANGULATED : NUMBER(1, 0)

1S_XLINK : NUWBER(1, 0)

1S_REVERSE : NUMBER(1, 0)

0.1 |GEOMETRY : MDSYS SDO_GEOMETRY

L JSOLID_GEOMETRY : MDSYS.SDO_GECMETRY

IWPLICIT_GEGHETRY : MDSYS SDO_GEOMETRY

CITYOBJECT D : NUMBER

I

0.1

<PH»SURF ACE_GEOMETRY_PI: ID
«FKSURF ACE_GEOM_CITYOBJ_FK: CITYOBJECT_D

=}

«FK»SURFACE_GEOM_PARENT_FK: PARENT_ID
«FK2SURFACE_GEOM_ROOT_FK: ROOT_ID

Fig. 2.48: GenericCityObject and generic attributes database schema

2.7. Relational database schema

95

3D City Database for CityGML, Release 4.1

Table 2.16: GenericAttribute type

DATATYPE attribute type

1 STRING

2 INTEGER

3 REAL

4 URI

5 DATE

6 MEASURE

7 Group of generic attributes
8 BLOB

9 Geometry type

10 Geometry via surfaces in the table SURFACE_GEOMETRY

lease note that the binary and geometric data types (incl. geometry via surfaces) are not supported by CityGML and
cannot be exported using the CityGML Import / Export tool! But, if a user wants to add additional attributes to thematic
tables, he should use the schema of the CITYOBJECT_GENERICATTRIB table rather than adding additional columns
to existing tables, because only in this way the Import / Export tool can automatically write them to CityGML.

Moreover, generic attributes can be grouped using the CityGML class genericAttributeSet. Since genericAttributeSet
itself is a generic attribute, it may also be contained in a generic attribute set facilitating a recursive nesting of arbitrary
depth. This hierarchy within a genericAttributeSet is realized by the foreign key PARENT_GENATTRIB_ID which
refers to the superordinate genericAttributeSet (aggregate) and contains NULL, if such does not exist. The foreign
key ROOT_GENATTRIB_ID refers directly to the top level (root) of a genericAttributeSet tree. In order to select all
generic attributes forming a genericAttributeSet one only has to select those with the same ROOT_GENATTRIB_ID.

96 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

The next available ID for the table CITYOBJECT_GENERICATTRIB is provided by the sequence CITYOB-

JECT_GENERICATT_SEQ.

2.7.3.9 LandUse Model

The CityGML feature class LandUse and its attributes specified in the UML (cf. Fig. 2.15) diagram are directly mapped
the LAND_USE table and its corresponding columns. The relation to table SURFACE_GEOMETRY is established
by the foreign keys LODx_MULTI_SURFACE_ID, where 0 x 4.

= aables
CITYOBJECT

D - NUMBER

OBJECTCLASS_ID : NUMBER

GILID : VARCHARZ(256)

GMLID_CODESPACE : VARCHAR2(1000)

NAME : ARCHAR2(1000)

NAME_CODESPACE : VARCHAR2(4000)

DESCRITION : VVARCHAR2(4000)

ENVELOPE : MDSYS SDO_GECMETRY

CREATION_DATE : TIMESTAMP WITH TIME ZONE

TERMINATION_DATE : TMESTAMP MITH TIIE ZONE

RELATIVE_TO_TERRAIN - ARCHAR2(256)

RELATIVE_TO_WATER : ARCHAR2(256)

LAST_MODIFICATION_DATE : TIMESTAMP WITH TIME ZONE

URDATING_PERSON : VARCHAR2(256)

REASON_FOR_UPDATE : \YARCHAR2(4000)

LINEAGE - VARCHAR2(256)

¥ML_SOURCE : CLOB

«PH=CITYOBJECT_PH: ID
«FH2CITYOBJECT_OBJECTCLASS _FK: OBJECTCLASS_ID

= atables

LAND_USE
ID: NUWBER
OBJECTCLASS_|D : NUMBER
CLASS . VARCHAR2(256)

0.1

.

= «tables
SURFACE_GEOMETRY
D - NUMBER

GMLID - VARCHAR2(256)
GMILID_CODESPACE : VARCHAR2(1000)

o PARENT_ID' : NUMBER

CLASS_CODESPACE : VARCHAR2(4000)
FUNCTION : % ARCHARZ(1000)
FUNCTION_CODESPACE : v ARCHAR2(4000)
USAGE : VARCHARZ(1000)

ROOT_ID : NUMBER
1S_SOLID : NUMBER(1, 0)
IS_COMPOSITE : NUMBER(1, 0)
IS_TRIANGULATED : NUMBER(1, 0)

0.

USAGE_CODESPACE : VARCHAR2(4000)
LODO_MULTI_SURFACE_D : NUMBER
LOD1_MULTI_SURFACE_D : NUMBER !

IS_XLINK : NUMBER(1, 0)
1S_REVERSE : NUMBER(1, 0}
0.1 |GEOMETRY : MDSY'S SDO_GEOMETRY

LOD2_MULTI_SURFACE_ID : NUMBER
LOD3_MULTI_SURFACE_D : NUMBER
LOD4_MULTI_SURFACE_ID : NUMBER .

SOLID_GEOMETRY : MDSYS.SDO_GEOMETRY
IMPLICIT_GEOMETRY : MDSYS.SDO_GEOMETRY
0.1 |CITYOBJECT_ID : NUMBER

0.4 |ePH=SURFACE_GEOMETRY_PK: ID

<PH>L AND_USE _PK: ID
«Fl>LAND_USE_CITYOBJECT FIt: ID
«Fl6>LAND_USE_LODOMSRF_FI: LODO_MULTI_SURFACE_ID
«FiaLAND_USE_LODIMSRF_Fi: LOD1_MULTI_SURFACE_ID
«FK>LAND_USE_LOD2MSRF_FK: LOD2_MULTI_SURFACE_ID
<FisL AND_USE L OD3MSRF_FH: LOD3_MULTI_SURFACE_ID
«Fl>LAND_USE_L OD4MSRF_FH: LOD4_MULTI_SURFACE_ID
«Fl6zLAND_USE_OBJCLASS FI: OBJECTCLASS D

<FH>SURFACE_GECM_CITYOBJ_FIC CITYOBJECT_ID
<FH>SURFACE_GEOM_PARENT_Fi: PARENT_ID
<FH>SURFACE_GEOM_ROOT_FK: ROOT_ID .

0.1 0.1

Fig. 2.49: LandUse database schema

2.7. Relational database schema

97

3D City Database for CityGML, Release 4.1

2.7.3.10 Digital Terrain Model

A tuple in the table RELIEF_FEATURE represents a complex relief object, which consists of different relief com-
ponents. It has an attribute LOD that describes the affiliation of the relief object to a certain level of detail (LoD) of
the city model. The individual components of a complex relief object are stored in the tables BREAKLINE_RELIEF,
TIN_RELIEF, MASSPOINT_RELIEF and RASTER_RELIEF. Every relief component has an attribute LOD that de-
scribes the affiliation to a certain level of detail (resolution, accuracy). However, individual components of a complex
relief object may belong to different LoD and may be heterogeneous, i.e. a mixture of TINs, grids and mass points.
Optionally, the geometrical separation between the individual relief components of a complex relief object can be
realized via polygons (attribute EXTENT), which specify the validity area of the relief component. Every relief com-
ponent has an attribute NAME that is used for naming of the component. The relief as well as every relief component
are derived from CITYOBJECT and receive the same ID as the CityObject. Table RELIEF_FEAT_TO_REL_COMP
represents the interrelationship between relief features and relief components.

= ctables
ciyoBiECT
D NUMBER

OBECTCLASS D NUVBER

(GMLID: VARCHAR2(256)

NAIE _CODESPACE : VARCHAR(4000)

ENVELOPE - IDSYS S00_GEOVETRY
(CREATION DATE : TWESTAMP WITH THE ZOKE
TERMINATION_DATE : TINESTAVP VITH TIVE ZONE
RELATIVE_TO_TERRAN : VARCHAR2(255)
RELATIVE_TO_WATER : VARCHARZ(256)
LAST_MODFICATION_DATE : TWESTAMP WITH TIE ZOKE
PDATING.PERSON : VARCHAR2(256)
REASON_FOR_UPDATE
 Juneace : varcraraczss)
XML_SOURCE: CLOB.

PIOCITYOBJECT P D
I CITYOBUECT_OBJECTCLASS.Fic OBUECTCLASS D

01
= ctables
RELEF FEATURE
0 uIBER 01
OBJECTCLASS : NUIBER
LOD - NUMBER(1) = tables (=] dables
RELEF_FEAT_TO_REL_COP RELEF COMPONENT
RELIEF_COMPONENT I NUMBER L
RELIEF_FEATURE D NUNBER OBIECTCLASS Ib: NUMEER
| | LoD: MuIBER(1)
PIGRELEF_FEATURE PIc D — |1 GFTETiNSYSS00_GRouETRY VERSIONED TABLE
FIGRELEF_FEAT_CITYOBUECT_FIK D .

<PIGRELIEF_FEAT_TO_REL_COMP_PK: RELIEF_CONPONENT_ID, RELEF_FEATURE 1D
<FIGREL_FEAT_TO_REL_COMP_F; RELIEF_COMPONENTID
FIGREL_FEAT_TO_REL_COMP_FK1: RELEF_FEATURE D

<FKARELIEF_FEAT_OBICLASS_FI; OBJECTCLASS D
<CheckoRELEF _FEAT_LOD_CHK: LOD >=0 ANDLOD <5

UNVERSIONED TABLE
PIGGRELEF_CONPONENT Pic D

\<FIGRELIEF_COMP_CITYOBUECT_FIC D

\<FKGRELEEF_COMP_OBICLASS.F: OBJECTCLASS JD

<CheckoRELEF_COIP_LOD_CHK: LOD =0 ANDLOD <5

=]

e PR PR PR P

T

e etan: a0

AT

(CITYOB.ECT_D: NUVBER | 'BANDBLOCKNUMBER : NUVMBER

e Foven s maten

e SmeAce oo om pr CTVCacT D o fetarerosaumeEn aESTI

0.1 |cFK>SURFACE GEOM_PARENT_FK: PARENT D — e T omE
K
(=] ables
e 1 e Orals S30_GEORASTER bjcs as
= — T soaing e e an s
T R CoveRACE o
o e oo oo, e - L o
(CONTROL_POINTS : HDSYS SDO_GEOHETRY s i = P o1
el epioitlopi s [. - - .
e aeoveuass o: nen Cwmesy Olimems
et aee vosvasao. ey e

<FKSTIN_RELIEF_OBICLASS.Fi: OBJECTCLASS 1D CFHAHASSPOINT_REL_OBUCLASS_Fi: OBJECTCLASS € <FKABREAKLIE RELEF COMP_FIG D PIGRASTER_RELEF_PIK PIGRD_COVERAGEPIG D

<FIGBREAKLINE FEL_OBJCLASS_FIc OBJECTCLASS D |¢FaRASTER_RELEF_COMP_FK. D
FIGRASTER_RELIEF_COVERAGE_FIt: COVERAGE ID
(FIGRASTER_RELIEF_OBICLASS_FK; OBJECTCLASS ID.

Fig. 2.50: Digital Terrain Model database schema

A raster relief is the only feature in CityGML that can be described by a grid coverage. Corresponding database types
are SDO_GEORASTER in Oracle Spatial 11g or higher (not available in Oracle Locator) and RASTER in PostGIS
2.0 or higher. In Oracle for each table that stores SDO_GEORASTER an additional table of type SDO_RASTER is
mandatory (raster data table = RDT). It stores the metadata of the SDO_GEORASTER.

In case of that a grid representation is introduced to other features in CityGML in the future, numerous RDT tables
would be created when storing grids along with the thematic tables. Thus, a central table called GRID_COVERAGE
is used to register all grid data and to prevent numerous additional tables in the 3DCityDB schema. This concept is

98 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

analogue to the storage of surface-based geometry whereas SURFACE_GEOMETRY is the central table.

Since Oracle Spatial 11g the SDO_GEORASTER type supports Oracle Workspace Manager (cf. [Murr2010]). There-
fore, the table GRD_COVERAGE_RDT can be versioned for history management. However, Oracle Spatial doesn’t
allow user to version-enable the tables, where GeoRaster objects are stored. Hence, the table GRID_COVERAGE
cannot be versioned using the Oracle Workspace Manager.

Geometry attributes for different relief components are limited to these value domains:
BREAKLINE_RELIEF
« BREAK_LINES and RIDGE_OR_VALLEY_LINES
— Oracle: MultiLine (GTYPE 3006)
— PostGIS: MultiLineString Z
TIN_RELIEF
e STOP_LINES and BREAK_LINES
— Oracle: MultiLine (GTYPE 3006)
— PostGIS: MultiLineString Z
¢ RELIEF_POINTS
— Oracle: MultiPoint (GTYPE 3001 or 3005)
— PostGIS: MultiPoint Z
e TIN
— TIN triangles could be stored as triangulated surfaces in table SURFACE_GEOMETRY
MASSPOINT_RELIEF
¢ RELIEF_POINTS
— Oracle: MultiPoint (GTYPE 3001 or 3005)
— PostGIS: MultiPoint Z
RELIEF_COMPONENT
* EXTENT (defines the validity extents of each relief component)
— Oracle: Polygon (GTYPE 3003, ETYPE 1003, SDO_ INTERPRETATION 1 or 3 (optimized rectangle))
— PostGIS: Polygon Z

2.7.3.11 Transportation Model

For the realisation of transportation objects two tables are provided: TRAFFIC_AREA and TRANSPORTA-
TION_COMPLEX.

TRAFFIC_AREA

Next to the common attribute triple class, function and usage traffic areas can store information about their surface-
Material. In the UML model this attribute is specified as gml:CodeType which makes an additional _CODESPACE
column necessary. The representation of geometry is handled by foreign keys LODx_MULTI_SURFACE_ID (with 2
x 4). The aggregation relation between a transportation complex and the corresponding traffic areas results from the
foreign key TRANSPORTATION_COMPLEX _ID. The foreign key OBJECTCLASS_ID indicates whether a tuple
represents a TrafficArea (value 47) or an AuxiliaryTrafficArea (value 48) feature. If a CityGML ADE is used that ex-
tends any of the two classes TrafficArea or AuxiliaryTrafficArea, further values for OBJECTCLASS_ID may be added
by the ADE manager. Their concrete numbers depend on the ADE registration (cf. Section 3.9.3.3).

2.7. Relational database schema 99

3D City Database for CityGML, Release 4.1

TRANSPORTATION_COMPLEX

As shown in the UML diagram, every traffic area object may have the attributes class, function and usage. For
differentiation between the subclasses an OBJECTCLASS_ID column is used again:

* 42 (TransportationComplex)
e 43 (Track)

* 44 (Railway)

* 45 (Road)

* 46 (Square)

If a CityGML ADE is used that extends any of the classes named above, further values for OBJECTCLASS_ID may
be added by the ADE manager. Their concrete numbers depend on the ADE registration (cf. Section 3.9.3.3).

In the coarsest level transportation complexes are modelled by line objects. The corresponding column is called
LODO_NETWORK of geometry type MultiCurve in Oracle and MultiLineString Z in PostGIS. Starting form LOD1
the representation of object geometry is handled by foreign keys LODx_MULTI_SURFACE_ID (with 1 x 4).

2.7.3.12 Tunnel Model

The tunnel model, described in Section 2.6.4.9 at the conceptual level, is realised by the tables shown in Fig. 2.52. The
relational schema is identical to the building and bridge schema for the most parts except for the naming. Please, refer
to the explanation of the building schema on the previous pages for a complete understanding. The main differences
to the building schema are the following:

* Tunnels cannot be modelled in LoD 0. Therefore, no corresponding columns appear in the TUNNEL table.
* The CityGML feature HollowSpace can be seen analogue to the feature Room of a building or a bridge

* CityGML features of tunnels, such as boundary surfaces, installations, openings, hollow spaces and furniture,
are mapped to separate specific tables and are not stored in already existent ones (e.g. THEMATIC_SURFACE,
OPENING). The reason for this is to provide a schema that is as close to the UML model as possible. There
are slight differences between the building and the tunnel model that would lead to ambiguous references e.g. a
boundary surface of the building namespace cannot reference to a tunnel feature.

* OBJECTCLASS_ID of table TUNNEL_THEMATIC_SURFACE allows the values:
— 89 (TunnelCeilingSurface),
— 90 (InteriorTunnelWallSurface)
— 91 (TunnelFloorSurface),
— 92 (TunnelRoofSurface),
— 93 (TunnelWallSurface),
— 94 (TunnelGroundSurface),
— 95 (TunnelClosureSurface),
— 96 (OuterTunnelCeilingSurface),
— 97 (OuterTunnelFloorSurface).

e In the TUNNEL_INSTALLATION table external tunnel installations can be identified by the OBJECT-
CLASS_ID 86 and internal ones by 87.

e The OBJECTCLASS_ID column in table BRIDGE_OPENING can be of integer value 100 (BridgeDoor) or
99 (BridgeWindow). They are associated to entries in the table TUNNEL_THEMATIC_SURFACE via the
TUNNEL_OPEN_TO_THEM_SREF link table.

100 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

= atables
CITYOBUECT

D NUWBER

CBJECTCLASS D : NUMBER

(GIMLID : VARCHAR2(256)

GMLID_CODESPACE : VARCHAR2(1000)

NAME : VARCHARZ(1000)

NAME_CODESPACE : VARCHAR2(4000)

DESCRIPTION : VARCHAR2(4000)

ENVELOPE | MDSYS SDO_GECMETRY

CREATION_DATE : TIMESTAMP WITH TIME ZONE

TERMINATION_DATE : TIMESTARP WITH TIME ZONE

0.4
=

1D NUMBER

OBJECTCLASS_ID : NUMBER

CLASS : VARCHAR2(258)
CLASS_CODESPACE : VARCHAR2(4000)
FUNCTION: VARCHAR2(1000)
FUNCTION_CODESPACE : VARCHAR2(4000)
USAGE: VARCHAR2(1000)
USAGE_CODESPACE : VARCHAR2(4000)
SURFACE_MATERIAL : VARCHAR2(256)
SURFACE_MATERIAL_CODESPACE: VARCHAR2(4000)
LOD2_MULTI_SURFACE_ID : NUMBER
LOD3_MULTI_SURFACE_D : NUMBER
LODA4_MULTI_SURFACE_ID : NUMBER
TRANSPORTATION_COMPLEX D : NUMBER

atables
TRAFFIC_AREA

\«PK> TRAFFIC_AREA,_PK: ID

\«FIs TRAFFIC_AREA_CITYOBJECT_FI: ID
\«FKsTRAFFIC_AREA_L OD2MSRF_FK: LOD2_MULTI_SURFACE_ID
\«F s TRAFFIC_AREA,_| OD3MSRF_FH: LOD3_MULTI_SURFACE_D
(«FI» TRAFFIC_AREA_LODAMSRF_FI: LOD4_MULTI_SURFACE_ID
\«FKs TRAFFIC_AREA_OBJCLASS_FK: OBJECTCLASS_D

\«F s TRAFFIC_AREA_TRANCIMPLX_FI: TRANSPORTATION_COMPLEX D

! RELATIVE TO TERRAN: vARCHARZ(258) 1
RELATIVE_TO_WATER : VARCHAR2(256,
LAST_MODFICATION_DATE : TIMESTAMP WITH TIME ZONE
UPDATING_PERSON : VVARCHAR2(256)
REASON_FOR_UPDATE : YARCHAR2(4000)
LINEAGE : VARCHARZ(256)
1 XML_SOURCE: CLOB
<PK-CITYOBJECT_PK: ID
<FIGCITYOBUECT_OBJECTCLASS_FK: OBJECTCLASS_D
0.1
=] «tables
TRANSPORTATION_COMPLEX
D: NUVMBER
OBJECTCLASS_D : NUMBER
CLASS ; VARCHAR2(256)
CLASS_CODESPACE : VARCHAR2(4000)
FUNCTION : ARCHAR2(1000)
FUNCTION_CODESPACE : VARCHAR2(4000)
USAGE : VARCHAR2(1000)
USAGE_CODESPACE : VARCHAR2(4000)
LODO_NETWORIC : MDSYS SDO_GEOMETRYY
LOD1_MULTI_SURFACE_ID : NUMBER
LOD2_MULTI_SURFACE_D : NUMBER
0.1 |LOD3_MULTI_SURFACE ID : NUMBER
. LOD4_NLLTI_SURFACE_ID : NUMBER

<PHaTRANSPORTATICN_COMPLEX_PK: ID
«FI>TRAN_COMPLEX_CITYOBJECT_FI: ID
«FKsTRAN_COMPLEX_LOD1MSRF _FK: LOD1_MULTI_SURFACE_ID
«F s TRAN_COMPLEX_LODIMSRF _FK: LOD2_MULTI_SURFACE_D
«FI>TRAN_COMPLEX_LOD3MSRF _FI: LOD3_MULTI_SURFACE_ID
«FHKsTRAN_COMPLEX_LODAMSRF _FK: LOD4_MULTI_SURFACE_ID
«FaTRAN_COMPLEX_OBJCLASS_FK: OBJECTCLASS_ID

= atables

SURFACE_GEOMETRY - -
D: NUVBER ' '
GULID : VARCHAR2(258) 04

GILID_CODESPACE : YARCHAR2(1 000)
PARENT_ID : NUMBER
ROGT_D : NUMBER

0.4 [5_SOUD: MUMBER(1,) 01
15_COMPOSITE : NUMBER(1, 0)

1S_TRIANGULATED : NUMBER(1, 0}
IS_KLINK : NUMBER(1, 0)
1S_REVERSE : NUMBER(1, 0) 0.1

0.1 GECMETRY : MDSYS.SDO_GEOMETRY

OLID_GEOMETRY : MDSYS.SDO_GEOMETRY
IMPLICIT_GEOMETRY : MDSYS SDO_GEOMETRY 0.1
CITYOBJECT_ID : HUMBER

«PK»SURFACE_GEOMETRY_PK: ID
‘<F K2 SURF ACE_GEOM_CITYOBJ_FI: CITYOBJECT_ID

FH-SURFACE_GEOM_PARENT_FK: PARENT_ID
<FKSURF ACE_GEOM_ROOT_FK: ROOT_D .

Fig. 2.51: Transportation database schema

2.7. Relational database schema 101

3D City Database for CityGML, Release 4.1

Fig. 2.52: Tunnel database schema

102 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

* If a CityGML ADE is used that extends any of the named classes above, further values for OBJECTCLASS_ID
may be added by the ADE manager. Their concrete numbers depend on the ADE registration (cf. Section
3.9.3.3).

* In contrast to the building model tunnels and tunnel openings do not have addresses.

2.7.3.13 Vegetation Model

The vegetation model specified in Section 2.6.4.10 is realized by the tables shown in Fig. 2.53 which correspond
largely to the UML model.

SOLITARY_VEGETAT_OBJECT

The attributes class, function, usage, species, height, trunkDiameter, and crownDiameter describe single vegetation
objects. The attribute species is of type gml:CodeList in CityGML that can be referenced to a certain codespace.
Therefore, another _CODESPACE column is provided in the SOLITARY_VEGETAT_OBJECT table. Similar to the
building table attribute with measure information can optionally be coupled with a reference to the used measuring
scale by an additional _UNIT column.

The geometry of the vegetation can either be described explicitly using the attribute LOD4_OTHER_GEOM or
LOD4_BREP_ID or implicitly using a foreign key relation the IMPLICIT _GEOMETRY table including a refer-
ence point and optionally a transformation matrix (LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT
LODx_IMPLICIT_TRANSFORMATION, with 1 x 4).

PLANT_COVER

Information on vegetation areas are contained in attributes usage, class, function, and averageHeight. There is
also a _UNIT column to specify the scale the averageHeight values are based on. The geometry is restricted to
a MultiSurface or (and this is unique for PlantCover features) a MultiSolid, represented respectively by the for-
eign keys LODx_MULTI_SURFACE_ID (with 1 x 4) and LODx_MULTI_SOLID_ID which refer to the SUR-
FACE_GEOMETRY table.

2.7.3.14 WaterBody Model

WATERBODY, WATERBOD_TO_WATERBND_SRF

The modelling of the WATERBODY database schema corresponds largely to the respective UML model. For LoD0O
and LoD1 additional attributes are added, e.g. for modelling river geometry (LODx_MULTI_CURVE).

The geometries of LOD0O and LOD1 areal water bodies are stored within the table SURFACE_GEOMETRY. The
foreign keys LODx_MULTI_SURFACE_ID (with 0 x 1) refer to the corresponding rows. Geometry for water filled
volumes is handled in a similar way using foreign keys LODx_SOLID_ID (with 1 x 4).

For mapping the boundedBy aggregation which identifies the water body’s exterior shell managed by the WATER-
BOUNDARY_SURFACE table, the additional table WATERBOD_TO_WATERBND_SRF is needed to realise the
m:n relationship.

WATERBOUNDARY_SURFACE

The exterior shell of a WaterBody can be differentiated semantically using features of the type _WaterBoundary-
Surface. These features are stored in the WATERBOUNDARY_SURFACE table and can be distinguished by the
OBJECTCLASS_ID attribute:

e 11 (WaterSurface)
e 12 (WaterGroundSurface)
* 13 (WaterClosureSurface)

2.7. Relational database schema 103

3D City Database for CityGML, Release 4.1

[i]

D NUMBER
MIME_TPE : VARCHAR2(256;

] ables
SOLITARY_\VEGETAT_OBJECT
1D - NUMBER

OBJECTCLASS D : NUMBER

CLASS : VARCHAR2(258)

CLASS_CODESPACE : YARCHAR2(4000)

FUNCTION : VARCHAR2(1000)

FUNCTION_CODESPACE : VARCHAR2(4000)

USAGE : VARCHARZ(1000)

USAGE_CODESPACE : VARCHAR2(4000)

'SPECIES : VARCHAR2(1000)

'SPECIES_CODESPACE : YARCHAR2(4000)

HEIGHT : BINARY_DOUBLE

HEIGHT_UNIT : VARCHAR2(4000)

TRUNK_DIAMETER : BINARY_DOUBLE
TRUNIC_DIAMETER _UNIT : VARCHAR2(4000)
CROWN_DIAMETER : BINARY_DOUBLE
CROWN_DIAMETER_UNIT : VARCHAR2(4000)

LOD1 OTHER_GEOM : MDSYS.SDO_GEOMETRY
LOD2_OTHER_GEOM: MDSYS SDO_GEOMETRY
LOD3_OTHER_GEOM: MDSYS.SDO_GEOMETRY.
LOD4_OTHER_GEOM : MDSYS.SDO_GEOMETRY
LOD1_IMPLICIT_REP_ID : NUMBER:
LOD2_IMPLICIT_REP_ID : NUMBER
LOD3_MPLICIT_REP_D - NUMBER
LOD4_IMPLICIT_REP_ID : NUMBER:
LOD1_IMPLICIT_REF_POINT : MDSY'S.SDO_GECMETRY
LOD2_MPLICIT_REF_POINT : DS ¥S.SDO_GEOETRY

0.1

<PK>SOLITARY_VEG_OBJECT_PK: D
<FK»SOL_VEG_OB._CITYOBJECT_FK: D

0.1

4FK>SOL_VEG_OB._LODBREP_FIt. LOD1_BREP_D
<FK»SOL_VEG_OBJ_LOD1IMPL_FK: LOD1_MPLIEIT_REP_D
<FK>SOL_VEG_OB._LOD2BREP_Fi: LOD2_BREP_D
<FK>SOL_VEG_OB._LODZIMPL_FI: LOD2_IMPLICIT_REP_D
. |<FK3S0L_VEG_OBJ_LODIBREP_FK: LOD3_BREP_ID
<FK>SOL_VEG_OB._LODAMPL_FK: LOD3_MPLICIT_REP_D
<FK>SOL_VEG_OB._L OD4BRER_FIt; LOD4_BREP_D
. [<FK»SOL_VEG_OB._LODAIMPL_FK: LOD4_IMPLICIT_REP_D
<FK>SOL_VEG_OBJ_OBICLASS_FK: OBJECTCLASS_ID

0.1 0.1

aables
IMPLICIT_GEOMETRY

)
SEFERENCE_TO_LBRARY : VARCHAR2(4000) .

PIaIMPLICIT_GEOMETRY_PH: ID

]

D: NUMBER

OBJECTCLASS_ID : NUMBER

GMLID : VARCHAR2(255)

‘GMLID_CODESPACE : VARCHAR2(1000)

NAME : VARCHAR2(1000)

NAME_CODESPACE : VARCHAR2(4000)
R4

atables
CITYOBJEET

RELATIVE_TO_TERRAIN : VARCHAR2(256)
RELATIVE_TO_WATER : VARCHARZ2(256)
LAST_MCDIFICATION_DATE : TMESTAMP WITH TIME ZONE
UPDATING_PERSON : VARCHAR2(256)
REASON_FOR_UPDATE : VARCHARZ2(4000)

LINEAGE : VARCHAR2(255)

XML_SOURCE : CLOB

<PIGCITYOBJECT_PK: ID
«FIE>CITYOBJECT_OBJECTCLASS It OBJECTOLASS_ID

] ables
PLANT_COVER
1D - NUMBER

OBJECTCLASS D : NUMBER

USAGE : VARCHAR2(1000)
USAGE_CODESPACE : VARCHAR2(4000)
CLASS : VARCHAR2(258)
CLASS_CODESPACE : ARCHAR2(4000)
FUNCTICN ; VARCHAR2(1000)
FUNCTION_CODESPACE : VARCHAR2(4000)
AVERAGE_HEIGHT : BINARY_DOUBLE
AVERAGE_HEIGHT_UNIT : Y ARCHAR2(4000)
LOD1 _MULTI_SURFACE_D : NUMBER
LODZ_MULTI_SURFACE_ID : NUMBER
LOD3_MULTI_SURFACE_ID : NUMBER
LODA_MULTI_SURFACE_D : NUMBER
LOD1_MULTI_SOLID_D : NUMBER

LOD4_MULTI_SOLID_D : NUMBER

‘<PK3PLANT_COVER_PH: ID
<FK>PLANT_COVER_CITYOBJECT_FK: D
\<FK»PLANT_COVER_LODIMSOLID_Fi: LOD1_MULTI_SOLID_D
‘<FI3PLANT_COVER_LOD1MSRF _FI: LOD1_MULTI_SURFACE_ID
'<FK3PLANT_COVER_LOD2MSOLID_FK: LOD2_MULTI_SOLID_D
\<FK»PLANT_COVER_LOD2MSRF_FK: LOD2_MULTI_SURFACE_ID
‘<FK3PLANT_COVER_LODAMSOLID_FF: LOD3_MULTI_SOLID_D
<FK3PLANT_COVER_LODAMSRF _FK: LOD3_MULTI_SURFACE_ID
\<FK»PLANT_COVER_LODMSOLID_Fi: LODA_MULTI_SOLID_D
‘<FK3PLANT_COVER_LODAMSRF _FI: LODA_MULTI_SURF ACE_ID
<FK3PLANT_COVER_OBJCLASS_FK: CBJECTELASS_ID

o4 |od|od | o] * 0.1 |04

01 @4 |gyfoa |04 |04

aables
SURFACE_GEOMETRY

1D - NUMBER

GILID : VARCHAR2(256)

GHLID_CODESPACE : VARCHAR2(1000)

15_S0LID : NUMBER(1, 0)
IS_COMPOSITE : NUMBER(1, 0)
1S_TRIANGULATED : NUMBER(1, 0)

1S _XLINK : NUMBER(1, 0)
1S_REVERSE : NUMBER(1, 0)
GEONETRY : MDSYS.SDO_GEOMETRY

EF
MDSYS.SDO_GEOMETRY

<FIKaIMPLICIT_GEQN_BREP_FIS; RELATIVE_BREP_D

Fig. 2.53: Vegetation database schema

SOLID_GEONETRY : MDSYS.SDO_GEOMETRY
IMPLICIT_GEOMETRY : MDS'YS.SDO_GEOMETRY
CITYOBJECT D : NUMBER

\<PK>SURFACE_GEOMETRY_PK: ID
'<FK»SURFACE_GEOM_CITY OBJ_FK: CITYOBJECT_ID .
\<FK>SURFACE_GEOM_PARENT_FK: PARENT_ID

<FK>SURFACE_GEOM_ROOT_FI: ROOT_ID

104

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

If a CityGML ADE is used that extends any of the named classes above, further values for OBJECTCLASS_ID may
be added by the ADE manager. Their concrete numbers depend on the ADE registration (cf. Section 3.9.3.3).

Since every _WaterBoundarySurface object must have at least one associated surface geometry, the foreign keys
LODx_SURFACE_ID (with 2 X 4, no MultiSurface here) are used to realise these relations.

=]

D - NUMBER

OBJECTOLASS_ID : NUMBER

GLID : VVARCHAR2(256)

GNLID_CODESPACE : YARCHAR2(1000)

NAME : VARCHAR2(1000)

NAME_CODESPACE : ARCHAR2(4000)
DESCRIPTION : VARCHAR2(4000)

ENVELOPE : MDSYS.SDO_GEOMETRY
CREATION_DATE : TMESTAMP \WITH TIME ZONE
TERMINATION_DATE : TIMESTAMP WITH TIME ZONE
RELATIVE_TO_TERRAIN : VARCHAR2(256)
RELATIVE_TC_WATER : VARCHAR2(256)
LAST_MODIFICATION_DATE : TIMESTAMP WITH TIME ZONE | 1

stables
CITYOBJECT

0.1

i) atables
WATERBODY

D : NUMBER

OBUECTCLASS D : NUMBER

CLASS : VARCHAR2(256)

CLASS_CODESPACE : ARCHAR2(4000)

FUNCTION : VVARCHAR2(1000)

FUNCTION_CODESPACE : ARCHAR2(4000)

USAGE : VARCHAR2(1000)

USAGE_CODESPACE : VARCHAR2(4000)

LODO_MULTI_CURVE : MDSYS SDO_GECMETRY

LOD1_MULTI_CURVE : MDSYS.SDO_GECMETRY

LODO_MULTI_SURFACE_ID : NUMBER

LODA_MULTI_SURFACE_ID : NUMBER

LOD1_SCLID_ID : NUMBER

LOD2_SOLID_ID : NUMBER

LOD3_SOLID_ID: NUMBER

LOD4_SCLID 1D : NUMBER

<PKzWATERBODY_PK: ID
<FI{WATERBODY_CITYOBJECT_FIt: ID
<FI{WATERBODY_LODOIMSRF_FI: LODO_MULTI_SURF ACE _ID
<FIsVWATERBODY_LODTMSRF_FK: LOD1_MULTI_SURFACE_ID
<FIKzWATERBODY _LOD1SOLID_FK: LOD1_SOLID_D
<FIKzWATERBODY_LOD2SOLID_FK: LOD2_SOLID_D
<FI{-WATERBODY_LOD3SOLID_Fi: LOD3_SOLID_D
«FIsWATERBODY_LOD4SOLID_FK: LOD4_SOLID_D
<FIsWATERBODY _OBCLASS_FK: OBJECTCLASS_D

UPDATING_PERSON : VVARCHAR2(256)
REASON_FOR_UPDATE : VARCHAR2(4000)
LINEAGE : VARCHAR2(256)

XML_SOURCE : CLOB

<PIsCITYOBJECT_PK: ID
<FIsCITYOBJECT_OBJECTCLASS_FH: OBJECTCLASS_ID

= atables
WATERBOD_TO_WATERBND_SRF

WWATERBOUNDARY_SURFACE_ID : NUMBER

WATERBOD' ID : NUMBER

| A I |

sPKWATERBOD_TO_WATERBND_PK: WATERBOUNDAR'Y_SURFACE_ID, WATEREODY_ID
sFKWATERBOD_TO_WATERBND_FK: WATERBOUNDARY_SURFACE_D
<FKaVVATERBOD_TO_WATERBEND_FK1: WATERBODY_ID

] stables
SURFACE_GEOMETRY
ID : NUMBER
IGMLID : VARCHAR2(256)
. (GMLID_CODESPACE : VARCHAR2(1000) 0.1
PARENT_ID : NUMBER

0.1
=

D NUMBER

OBJECTCLASS._ID : NUMBER

\WATER_LEVEL : VARCHAR2(256)
\WATER_LEVEL_CODESPACE : VARCHAR2(4000)
LOD2_SURFACE_ID : NUMBER
LOD3_SURFACE._ID : NUMBER
LOD4_SURFACE_ID : NUMBER

stables
WATERBOUNDARY,_SURFACE

«PKWATERBOUNDARY_SURFACE_PH: ID
(«FHAWATERBND_SRF_CITYOBJECT_FIt: ID
\«FKaVWATERBND_SRF_LOD2SRF_FK: LOD2_SURFACE_ID
\«FKVWATERBND_SRF_LOD3SRF_FK: LOD3_SURFACE_ID
\FKWATERBND_SRF_LOD4SRF_FK: LOD4_SURFACE_ID
(«FIVVATERBND_SRF_OBJCLASS_FK: OBJECTCLASS_D

ROOT_ID : NUMBER
0.1 15_SOUD: NUMBER(1,0)
IS_COMPOSITE : NUMBER(1, 0)

1S_TRIANGULATED : NUMBER(1, 0) 0.1
0.1 IS_XLINK: NUMBER(1, D)

IS_REVERSE : NUMBER(1, 0)

GEOMETRY : MDSYS SDO_GEOMETRY
0.1 |SOLID_GEOWETRY : MDSY'S.SD0_GECMETRY

IMPLICIT_GECMETRY : MDS'S.SDO_GEOMETRY

CITYOBJECT D - NUMBER

<PK»SURFACE_GEOMETRY _PK: ID

'aFK»SURFACE_GEOM_CITYOBJ_FK; CITYOBJECT_ID
«FKxSURFACE_GECM_PARENT_FK: PARENT_ID
<FK»SURFACE_GECM_ROCT_FK: ROOT_ID

2.7.3.15 Sequences

0.1 0.1

Fig. 2.54: WaterBody database schema

Fig. 2.55 lists predefined sequences from which multiple users may generate unique integers for primary keys auto-

matically. Sequences help to coordinate primary keys across multiple rows and tables. For instance, the ID values of
the BUILDING table are generated from the CITYOBJECT_SEQ sequence. The sequences are defined to start with
1 and to be incremented by 1 when a sequence number is generated. It is highly recommended to generate ID values
for all tables by using the predefined sequences only.

2.7. Relational database schema 105

3D City Database for CityGML, Release 4.1

The sequence GRID_COVERAGE_RDT_SEQ does not exist in the PostgreSQL version as the corresponding table
does not exist.

12 ADE_SEQ el SCHEMA_SEQ
Increment : 1

Maximum ‘Value :

Minimum “alue : 1

Increment : 1
Mandimum Yalue :
Minimum %alue : 1

Start With : 1 Start With - 1
2 aSeqUEnces 2 aSeqUEnces 2 aSeqUEnces
ADDRESS_SEQ APPEARANCE_SEG IMPLICIT_GEOMETRY _SEQ
Increment : 1 Increment : 1 Increment : 1

Maximum Yalue :
Minimum “alue : 1

Start With : 1

He «Sefuences
CITYMODEL_SEQ

Increment : 1

Maximum Yalue :
Minimum “alue : 1

Start With © 1

2 «Sefuences
CITYOBJECT_SEQ

Increment : 1

Maximum Value :
Minimum “alue : 1

Start With : 1

2 «Sefuences
TEX_IMAGE_SEQ

Increment : 1

Maximum Yalue :
Minimum %alue : 1
Start With : 1

Maximum “alue :
Minimum %alue : 1

Start With - 1

He «Sefuences
SURFACE_DATA_SEQ

Increment : 1

Maximum “alue :
Minimum %alue : 1

Start With : 1

i 3DCityDB
CITYOBJECT_GEMERICATT_SEQ

Increment : 1

Maximum “alue :
Minimum %alue : 1

Start With : 1

2 «Sefuences
GRID_COVERAGE_SEQ

Increment : 1

Maximum “alue :
Minimum %alue : 1
Start With - 1

Maximum ‘alue :
Minimum “alue : 1
Start With : 1

«Sefuences
SURFACE_GEOMETRY _SEQ
Increment : 1

Maximum ‘alue :

Minimum “alue : 1

Start With : 1

2 «Sefuences
EXTERMAL_REF_SEQ

Increment : 1

Maximum “alue :
Minimum “alue : 1
Start With : 1

2 «Sefuences
GRID_COVERAGE_RDT_SEQ
Incremert : 1

Maximum ‘alue :

Minimum “alue : 1

Start With : 1

Fig. 2.55: Overview of all sequences used in 3DCityDB

The figures are taken from Oracle JDeveloper, which allows to design different diagrams and reuse already defined
tables. JDeveloper (v12.2.1) was used to design the database schema and extract SQL DDL scripts automatically for
Oracle databases. It is a freeware IDE by Oracle and can be downloaded at: http://www.oracle.com/technetwork/
developer-tools/jdev.

For PostgreSQL databases the Open Source tool pgModeler (v0.8.2) has been used to maintain the schema. Packed
installers can be purchased at http://pgmodeler.com.br/ or the user compiles the software from the source code available
at GitHub (https://github.com/pgmodeler/pgmodeler).

Starting from version 3.0.0 of the 3DCityDB the corresponding schema modelling projects are shipped with the release
and can be edited by the user to create customized SQL scripts. However, the 3DCityDB Import/Export tool only
supports the default schema, unless it is not reprogrammed against the user’s new database schema.

106 Chapter 2. 3D City Database

http://www.oracle.com/technetwork/developer-tools/jdev
http://www.oracle.com/technetwork/developer-tools/jdev
http://pgmodeler.com.br/
https://github.com/pgmodeler/pgmodeler

3D City Database for CityGML, Release 4.1

2.8 Definition of the CRS for a 3D City Database instance

The definition of the CRS of a 3D City Database instance consists of two components: 1) a valid Spatial Reference
Identifier (SRID, typically the EPSG code) and 2) an OGC GML conformant definition identifier for the CRS. Both
components are defined during the database setup (see Section 1.3) and are further stored in the table DATABASE_SRS
(see Fig. 2.28).

The SRID is an integer value key pointing to spatial reference information within Oracle’s MDSYS.CS_SRS table or
PostGIS’ SPATTAL_REF_SYS table. Both DBMSs are shipped with a large number of predefined spatial reference
systems. At setup time, the SRID chosen as default value for the 3D City Database instance must already exist
in the mentioned tables.

The GML conformant CRS definition identifier is used as value for the gml:srsName attribute on GML geometry
elements when exporting database contents to CityGML instance documents. It should follow the OGC recommenda-
tion for the Universal Resource Name (URN) encoding of CRSs given in the OGC Best Practice Paper Definition
identifier URNs in OGC namespace [Whit2009]. At setup time, please make sure to provide a URN value which
corresponds to the spatial reference system identified by the default SRID of the database instance. Since CityGML is
a 3D standard, the URN encoding shall always represent a three-dimensional CRS which, for example, can be de-
noted as compound coordinate reference systems [Whit2009]. The general syntax of a URN encoding for a compound
reference system is as follows:

Authority, version, and code depend on the information authority providing the CRS definition (e.g. EPSG or OGC).
The following example shows a possible combination of an SRID (here referring to a 2D CRS) and CRS URN encod-
ing (3D) to set up an instance of the 3D City Database:

The example SRID is referencing a Projected CRS defined by EPSG (DHDN / 3-degree Gauss-Kriiger zone 2; used
in the western part of Germany; EPSG-Code: 31466). The URN encodes a compound coordinate reference system
which adds a Vertical CRS as height reference (DHHN92 height, EPSG-Code: 5783).

2.9 Working with multiple database schemas

Most users rarely work with only one 3D City Database. They maintain multiple instances for each data set, for
different city projects or user groups and probably for various test demos. The new ability to manage CityGML ADEs
sets the ground for even more experiments. This chapter explains how to manage multiple 3D City Databases in
separate schemas.

2.9.1 Create and address database schemas

Databases and schemas in PostgreSQL

PostgreSQL provides a clustering concept for database schemas that allows users to group multiple instances of the 3D
City Database. This means within one database object a user can create more schemas like in the ‘citydb’ schema, that
store the table layout of the 3D City Database. They can be regarded as separate namespaces. To address the different
namespaces, dot notation should be used in queries. Note, if tables are not schema-qualified the first namespace in
the database search path (see Section 1.3.4) that contains the tables will be used. One advantage of using multiple
schemas instead of many databases is the ability to join tables from different namespaces. Cross-database queries are
not directly possible in PostgreSQL (see postgres_fdw extension).

To create an additional 3D City Database instance within a given database run the CREATE_SCHEMA shell script
and define a name for the new schema. The new instance will obtain the CRS from the ‘citydb’ schema, which can be
changed later (see chapter Section 2.10.5). To drop a schema, call the DROP_SCHEMA shell script.

Oracle user schemas

2.8. Definition of the CRS for a 3D City Database instance 107

3D City Database for CityGML, Release 4.1

In Oracle, schemas are bound to one user. All user schemas belong to one database. There is no clustering concept
like in PostgreSQL, so a CREATE_SCHEMA script would not make too much sense. In fact, a new instance should
be created with a new user and the CREATE_DB script. Like with PostgreSQL schemas, it is possible to join ta-
bles from different user namespaces if sufficient privileges were granted (see next section). As another alternative
Oracle databases can be set under version control with the Oracle Workspace Manager so that a user can also work
with multiple versions of a city model in separate workspaces. To change the workspace a user must execute the
DBMS_WM.GotoWorkspace procedure.

2.9.2 Read and write access to a schema

A shell script called GRANT_ACCESS is provided to grant either READ-ONLY (RO) or READ-WRITE (RW) ac-
cess rights to a 3D City Database instance. The user who acts as the grantor must be specified in the CONNEC-
TION_DETAILS file. The user name of the grantee must be entered when executing the script.

Read-only access rights

Granting only read access is useful if you want to protect your data from unauthorized or accidental modification. This
is the default setting in the GRANT_ACCESS script. Read-only users will be allowed to:

 connect to the given database schema and use its objects (tables, views, sequences, types etc.),
e export data in both CityGML and KML/COLLADA formats,
* generate database reports, query the index status and calculate envelopes.

But they can neither import new data into the 3DCityDB nor alter the data already stored in the tables in any way (incl.
updating envelopes, dropping and creating indexes).

Read and write access rights

By choosing the RW option in the GRANT_ACCESS script the grantee will also be able to perform UPDATE and
DELETE operations against the schema content. This is especially useful for Oracle users, who want to manage
different database schemas with primarily one user. In PostgreSQL however, one user can be the owner of multiple
schemas. Still, write access can be interesting in a multi-editor scenario.

Note: Dropping and creating indexes is not possible in PostgreSQL, if you’re not the owner of the table.

Revoke access

Like with the GRANT_ACCESS script, access rights can also be revoked, of course. Simply call the RE-
VOKE_ACCESS script and enter the user name of the grantee and the schema name from which the rights shall
be revoked from.

2.9.3 Schema support in stored procedures

Since v3.0.0, most stored procedures of the 3D City Database offer an input argument to specify the schema name
against which the operation will be executed. The default for Oracle is the schema of the currently connected user, for
PostgreSQL it is ‘citydb‘. For v4.0 this parameter has been removed for those type of stored procedures that operate
on the logical level of the database, because managing different ADEs in separate schemas can result in a different
table structure. E.g. one central delete script is not guaranteed to work against every schema. Thus, for PostgreSQL
these procedures are now part of an instance schema such as ‘citydb’ (see also Section 2.10). Instead of calling a delete
function from the central ‘citydb_pkg’ schema like this:

SELECT citydb_pkg.delete_cityobject (1, 'my_schema');

you now have to schema-qualify the function itself:

108 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

’ SELECT my_schema.delete_cityobject (1);

In Oracle, every stored procedure could be called this way, as every user schema stores the PL/SQL packages.

2.10 Stored procedures and additional features

The 3D City Database is shipped with a set of stored procedures referred to as the CITYDB package (formerly known
as the GEODB package in v2.x). They are automatically installed during the setup procedure of the 3D City Database.
For the Oracle version, it comprises of eight PL/SQL packages. In the PostgreSQL version, functions are written in
PL/pgSQL and stored either in their own database schema called ‘citydb_pkg’ or as part of an instance schema like
‘citydb’. Many of these functions and procedures expose certain tasks on the database side to the Importer/Exporter
client. When calling stored procedures, the package name has to be included for the Oracle version. With PostgreSQL,
the ‘citydb_pkg’ schema has not to be specified as prefix since it is put on the database search path during setup.

e-E citydb_v4 =+ = citydb_v4
i-fz3 Tables (Filtered) 1 [£9) Casts
LE Views * <& Catalogs
EIIE Editioning Views " [, Event Triggers
IE Indexes ': '@ Extensions (3)
FJL:@ Packages " T plpgsql
& CITYDB_CONSTRAINT - B postgis

&) CITYDB_DELETE B postgis_sfegal
E—J i CITYDB_ENVELOPE = Foreign Data Wrappers
=@ CITYDB_IDX

& @ CITYDB_OBICLASS - 7plegsql

~Languages (1)

{m CITYDB_SRS S @SChemas (3)

& @@ CITYDB_STAT o & ity

=@ CITYDB_UTL 9+ 49 citydb_pkg
Ui %?public

Fig. 2.56: Graphical database client connected to the 3D City Database (left: SQL Developer (Oracle), right: pgAdmin
4 (PostgreSQL)

2.10.1 User-defined data types
The Oracle version defines a set of user-defined data types that are used by functions from the PL/SQL packages. They
are not necessary in PostgreSQL, because of how it deals with arrays and returns of multiple variables.

* STRARRAY, a nested table of the data type VARCHAR2

¢ ID_ARRAY, a nested table of the data type NUMBER

* DB_VERSION_OBJ, an object that bundles version information of the installed 3D City Database instance

* DB_VERSION_TABLE, a nested table of DB_VERSION_OBJ

* DB_INFO_OBJ, an object that bundles metadata of the used reference system

* DB_INFO_TABLE, a nested table of DB_INFO_OBJ

2.10. Stored procedures and additional features 109

3D City Database for CityGML, Release 4.1

The definition of the data types can be found in the SQL file for the CITYDB_UTIL package.

2.10.2 CITYDB_UTIL

The CITYDB_UTIL package can be seen as a container for various single utility functions. If further releases will
bring more stored procedures with similar functionality some of them will probably be outsourced in their own pack-
age (like CITYDB_CONSTRAINT in v4.0). Nearly all functions take the schema name as the last input argument
(“schema-aware”). Therefore, they can be executed against another user schema in Oracle or database schema in
PostgreSQL. Note, for the function get_seq_values the schema name must be part of the first argument — the sequence
name, e.g. ‘my_schema.cityobject_seq’.

Here is overview on API of the CITYDB_UTIL package in Oracle:

110 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.17: API of CITYDB_UTIL package for Oracle

Function

Return Type

Explanation

citydb_version ()

DB_VERSION_TABLE

Returns version information of the
currently installed 3DCityDB

construct_solid (geom_root_id)

SDO_GEOMETRY

Tries to construct a solid geometry
based on a given root_id value in
SURFACE_GEOMETRY table

db_info (schema_name)

3 OUT variables

Returns three columns:
schema_srid

INTEGER, schema_gml_srs_name
VARCHAR?2, versioning
VARCHAR?2

db_metadata (schema_name)

DB_INFO_TABLE

Returns a set of 3DCityDB
metadata

drop_tmp_tables (schema_name) void Drop existing temporal tables

get_id_array_size (ID_ARRAY) NUMBER Returns the size of an ID_ARRAY
nested table

get_seq_values (seq_name, ID_ARRAY Returns the next k values of a

seq_count) given sequence

min (NUMBER, NUMBER) NUMBER Returns the smaller of two given
numbers

sdo2geojson3d CLOB Returns a given geometry into a

(SDO_GEOMETRY,
decimal_places, compress_tags,
relative2mbr)

3D GeoJSON character object

a}

CSTRARRAN

i+ /A RCIIA P D 14 Y
VAN » UUITIHIIICT)

split tVARCHAR
2.1"0. \Stored rocedures and add

O TINAAYININAYT

itional features

[QW B7S Qigar 1 a | 1
D P a SUTEg OastU UIda EIVeITD

111

delimiter into a STRARRAY object

3D City Database for CityGML, Release 4.1

The PostgreSQL API includes less functions, as some functionality is provided by the PostGIS extension, such as
ST_AsGeoJSON, ST_Affine and ST_Force2D. Returning multiple variables is always performed with OUT variables.

Table 2.18: API of CITYDB_UTIL package for PostgreSQL

Function

Return Type

Explanation

citydb_version ()

4 OUT variables

Returns version information of the
currently installed 3DCityDB

db_info (schema_name)

3 OUT variables

Returns three columns:
schema_srid

INTEGER, schema_gml_srs_name
TEXT, versioning TEXT

db_metadata (schema_name) 6 OUT variables Returns six variables: schema_srid
INTEGER, schema_gml_srs_name
TEXT,
coord_ref_sys_name TEXT,
coord_ref_sys_kind TEXT,
wktext TEXT, versioning TEXT
drop_tmp_tables (schema_name) void Drop existing temporal tables
get_seq_values (seq_name, SETOF INTEGER Returns the next k values of a
seq_count) given sequence
Min (NUMERIC, NUMERIC) NUMERIC Returns the smaller of two given
numbers
versioning_db (schema_name) TEXT Returns ‘OFF’
versioning_table (table_name, TEXT Returns ‘OFF’

schema_name)

112

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

2.10.3 CITYDB_CONSTRAINT

The CITYDB_CONSTRAINT packages includes stored procedures to define constraints or change their behavior. A
user can temporarily disable certain foreign key relationships between tables, e.g. the numerous references to the
SURFACE_GEOMETRY table. The constraints are not dropped. While it comes at the risk of data inconsistency
it can improve the performance for bulk write operations such as huge imports or the deletion of thousands of city
objects.

It is also possible to change the delete rule of foreign keys from ON DELETE NO ACTION (use ‘a’ as input) to ON
DELETE SET NULL (‘n’) or ON DELETE CASCADE (‘c’). Switching the delete rule will remove and recreate the
foreign key constraint. The delete rule does affect the layout of automatically generated delete scripts as no explicit
code is necessary in case of cascading deletes. However, we do not recommend to change the behavior of existing
foreign key relationships because some delete operations might not work properly anymore. For Oracle databases,
there is an additional procedure to define spatial metadata for single geometry column. All functions are schema-
aware and their return type is void.

2.10. Stored procedures and additional features 113

3D City Database for CityGML, Release 4.1

Table 2.19: API of CITYDB_CONSTRAINT package for Oracle

Function

Explanation

set_column_sdo_metadata
(geom_column_name, dimension, srid,
table_name, schema_name)

Inserts a new entry in the
USER_SDO_GEOM_METADATA

view for a given geometry column

set_enabled_fkey (fkey_name,
table_name, BOOLEAN,
schema_name)

Disables / enables a given foreign key constraint

set_enabled_geom_fkeys (BOOLEAN,
schema_name)

Disables / enables all foreign key constraints that
reference the SURFACE_GEOMETRY table

set_enabled_schema_fkeys (BOOLEAN,
schema_name)

Disables / enables all foreign key constraints
within a given user schema

set_fkey_delete_rule (fkey_name,
table_name, column_name, ref_table,
ref_column, on_delete_param,
schema_name)

Changes the delete rule of a given foreign key
constraint

set_schema_fkey_delete_rule
(on_delete_param, schema_name)

Changes the delete rule of all foreign key
constraint within a given user schema

set_schema_sdo_metadata
(schema_name)

Inserts new entries in the
USER_SDO_GEOM_METADATA

view for all geometry columns of a given schema
(some expections)

There is only one significant difference in the API in PostgreSQL. Instead of specifying the name, table and schema
of a foreign key, the OID of the corresponding integrity trigger is enough. This is because there is no ALTER TABLE

command in PostgreSQL to disable foreign keys.

114

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.20: Notable difference in the API of CITYDB_CONSTRAINT
package for PostgreSQL

Function Explanation

set_enabled_fkey (fkey_trigger_oid, BOOLEAN) Disables / enables a foreign key constraint trigger

2.10.4 CITYDB_IDX

The package CITYDB_IDX provides functions to create, drop, and check both spatial and non-spatial indexes on
tables of the 3D City Database by using a user-defined data type called INDEX_OBJ. In the Oracle version, the data
type offers three member functions to construct an INDEX_OBJ. In the PostgreSQL version, these are just separate
functions within the ‘citydb_pkg’ schema:

e construct_spatial_3d for a 3-dimensional spatial index
* construct_spatial_2d for a 2-dimensional spatial index
¢ construct_normal for a normal B-tree index

The easiest way to take use of this package is by using the Importer/Exporter (see Section 3.2.2), which provides an
interface for enabling and disabling indexes (ON and OFF). Disabling spatial indexes can accelerate some operations
such as bulk imports, deletion of many objects, and migration of data from a 3D City Database v2.1.0 instance to ver-
sion 4.0. The methods used by the Importer/Exporter iterate over the entries in the INDEX_TABLE table which is part
of the database schema. In order to include more indexes the user need to insert their metadata into INDEX_TABLE.
The differences between Oracle and PostgreSQL only apply to different data types. Instead of STRARRAY an array
of TEXT is used as return type.

2.10. Stored procedures and additional features 115

3D City Database for CityGML, Release 4.1

Table 2.21: API of CITYDB_IDX package for Oracle

Function Return Type Explanation
create_index (INDEX_OBJ, VARCHAR?2 Creates a new index based on the
is_versioned, schema_name) metadata of the
input INDEX_OBJ. Returns a text
status.
create_normal_indexes STRARRAY Creates indexes for all normal
(Schema_name) indexes to be
found in INDEX_TABLE. Returns
an array of

status reports.

create_spatial_indexes STRARRAY Creates indexes for all spatial
(schema_name) indexes to be
found in INDEX_TABLE. Returns
an array of

status reports.

drop_index (INDEX_OBJ, VARCHAR?2 Drops an index that matches the

is_versioned, schema_name) metadata of
the input INDEX_OBJ. Returns a
text status.

drop_normal_indexes STRARRAY Drops indexes that match all

(schema_name) normal indexes
to be found in INDEX_TABLE.
Returns an array

of status reports.

drop_spatial_indexes STRARRAY Drops indexes that match all spatial

(schema_name) indexes
to be found in INDEX_TABLE.
Returns an array

of status reports.

get_index (table_name, INDEX_OB]J Returns an INDEX_OBJ from
column_name, INDEX_TABLE
schema_name) based on the inputs

116 Chapter 2. 3D City Database
index_status (INDEX_OBIJ, VARCHAR2 Returns a text status for an index

schema_name) that matches

3D City Database for CityGML, Release 4.1

2.10.5 CITYDB_SRS

The package CITYDB_SRS provides functions and procedures dealing with the coordinate reference system used for
an 3D City Database instance. The most essential procedure is change_schema_srid to change the reference system for
all spatial columns within a database schema. If a coordinate transformation is needed because an alternative reference
system shall be used, the value ‘1’ should be passed to the procedure as the third parameter. If a wrong SRID had been
chosen by mistake during setup, a coordinate transformation might not be necessary in case the coordinate values of
the city objects are already matching the new reference system. Thus, the value 0 should be provided to the procedure,
which then only changes the spatial metadata to reflect the new reference system. It can also be omitted, as O is the
default value for the procedure. Either way, changing the CRS will drop and recreate the spatial index for the affected
column. Therefore, this operation can take a lot of time depending on the size of the table. Note that in Oracle, the
reference system cannot be changed for another user schema. So, there is no schema_name parameter. The is also
an additional function called get_dim(column_name, table_name, schema_name) to fetch the dimension of the spatial
column which is either 2 or 3.

2.10. Stored procedures and additional features 117

3D City Database for CityGML, Release 4.1

Table 2.22: API of CITYDB_SRS package for PostgreSQL
Function Return Type Explanation
change_column_srid void Changes the reference system for a

(table_name, column_name,
dimension, srid, do_transform,
geometry_type, schema_name)

given geometry column. Spatial
metadata

is needed to recreate the spatial
index.

change_schema_srid (srid,
gml_srs_name, do_transform,
schema_name)

void

Changes the reference system for
all

spatial columns inside a database
schema.

The second parameter needs to be a
GML-compliant URN to the CRS
(see Section 2.8)

check_srid (srid)

TEXT

Returns the message ‘SRID ok’ if
the CRS

with the given EPSG code exists in
the

database. Returns ‘SRID not ok’ if
not.

is_coord_ref_sys_3d (srid)

INTEGER

Tests if CRS with given EPSG code
isa

3D CRS. Returns 1 if yes and 0 if
not.

is_db_coord_ref_sys_3d
(schema_name)

INTEGER

Tests if the current CRS of a given
schema

is a 3D one. Returns 1 if yes and O
if not.

transform_or_null
(GEOMETRY, srid)

GEOMETRY

Applies a coordinate transformation
on the

input geometry with the given CRS.
Returns

NULL, if the input geometry is not
set.

118

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

2.10.6 CITYDB_STAT

The package CITYDB_STAT currently only serves a single purpose: To count all entries in all tables and generate
a report as an array of string values (STRARRAY data type in Oracle, text[] in PostgreSQL). The tabulator escape
sequence \t is used to generate a nice looking report for the Importer/Exporter.

Table 2.23: API of CITYDB_STAT package for Oracle

Function Return Type Explanation
table_content (table_name, NUMBER Returns the count result obtained
schema_name) from a query

against the given table

table_contents (schema_name) STRARRAY Returns a text array with row count
results

for most tables in 3D City Database
(excluding

metadata tables and system tables)

2.10.7 CITYDB_OBJCLASS

The CITYDB_OBJCLASS package only provides two convenience functions to cast between table names and ID
values of the OBJECTCLASS table. In contrast to the previously introduced packages these functions cannot be
applied against different database schemas as this would require dynamic SQL. While it would not be problem when
converting single values, the performance with dynamic SQL could be a lot worse when these functions are integrated
in a full table scan. Therefore, for PostgreSQL they are now part of the ‘citydb’ schema as pure SQL functions. In
Oracle, they make up another PL/SQL package.

Table 2.24: API of CITYDB_OBJCLASS package for Oracle

Function Return Type Explanation
objectclass_id_to_table_name VARCHAR?2 Returns the corresponding table
(objectclass_id) name to a given

object class ID

table_name_to_objectclass_ids ID_ARRAY Returns an array of object class IDs
(table_name) that a are
managed in the given table

2.10. Stored procedures and additional features 119

3D City Database for CityGML, Release 4.1

2.10.8 CITYDB_DELETE

The package CITYDB_DELETE consists of several functions that facilitate to delete single and multiple city objects.
Each function automatically takes care of integrity constraints between relations in the database. The package is meant
as low-level API providing a delete function for each relation (except for linking tables) — from a single polygon in the
table SURFACE_GEOMETRY (del_surface_geometry) up to a complete CityObject (del_cityobject) or even a whole
CityObjectGroup (del_cityobjectgroup). This should help users to develop more complex delete operations on top of
these low-level functions without re-implementing their functionality.

Most of the stored procedures take the primary key ID value of the entry to be deleted as input parameter and return
the ID value if the entry has been successfully removed. So, if NULL is returned, the entry is either already gone or
the deletion did not work due to an error. Nearly every delete function comes with a pendant to delete multiple entries
at once. These alternative functions take an array of ID values as input and return an array of successfully deleted
entries. For PostgreSQL, the array is unrolled inside the functions as PL/pgSQL can return a SET OF INTEGER
values.

In order to illustrate the low-level approach of this package, assume a user wants to delete a building feature together
with all its nested sub features. For this purpose, the user calls the del_building (or del_cityobject) function, which
internally leads to subsequent calls to the following stored procedures:

* del_building for the building and its dependent building parts (recursive call)

¢ del_thematic_surface for dependent boundary surfaces of the building (nested call of del_opening for dependent
openings of the boundary surfaces)

* del_building_installation for dependent outer installations of the building (nested call of del_thematic_surface
for boundary surfaces of the installations)

¢ del_room for dependent rooms of the building (nested call of del_thematic_surface for interior boundary sur-
faces, del_building_installation for interior installation and del_building_furniture for furniture within the room)

* del_address for dependent addresses that are not referenced by other buildings and bridges
* del_implicit_geometry for each prototype geometry of a nested feature, e.g. Openings, Buildinglnstallation
¢ del_surface_geometry for deleting the geometry of the building and its nested features

* del_cityobject to remove the entry in the CITYOBJECT table that corresponds to the deleted building and the
deleted child features (also deletes generic attributes, external references, appearances, etc.)

Note, that global Appearances with no direct reference to a CityObject are not deleted during such a deletion process.
Therefore, the method cleanup_appearances should be executed afterwards, to remove all Appearance information
(incl. entries in tables APPEAR_TO_SURFACE_DATA, SURFACE_DATA and TEX_IMAGE). Like with the stored
procedures from the CITYDB_OBJCLASS package, the delete functions are part of the ‘citydb’ schema and not
‘citydb_pkg’. This is not only because of a better performance without dynamic SQL. It is mandatory as the code for
the delete functions is generated automatically based on the foreign keys.

The del_ prefix is used to not exceed 30 characters in Oracle. As explained in Section 2.9, managing different CityGML
ADE:s in different schema would require different delete scripts for each schema. A simple code block to delete objects
based on a query result can look like this:

Oracle:

—-— single version

DECLARE
deleted_id NUMBER;
dummy_ids ID_ARRAY := ID_ARRAY();
BEGIN
FOR rec IN (SELECT % FROM cityobject WHERE ...) LOOP
deleted_id := citydb_delete.del_cityobject (rec.id);

(continues on next page)

120 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

(continued from previous page)

END LOOP;

dummy_ids := citydb_delete.cleanup_appearances;
END;
—-— array version
DECLARE

pids ID_ARRAY := ID_ARRAY ();

deleted_ids ID_ARRAY := ID_ARRAY();

dummy_ids ID_ARRAY := ID_ARRAY();
BEGIN

SELECT id BULK COLLECT INTO pids

FROM cityobject WHERE ...;

deleted_ids := citydb_delete.del_cityobject (pids);

dummy_ids := citydb_delete.cleanup_appearances;
END;
PostgreSQL:

—-— single version
SELECT citydb.del_cityobject (id) FROM cityobject WHERE ... ;
SELECT citydb.cleanup_appearances();

-— array version

SELECT citydb.del_cityobiject (array_agg(id))
FROM cityobject WHERE ... ;

SELECT citydb.cleanup_appearances();

Which delete function to use depends on the ratio between the number of entries to be deleted and the total count
of objects in the database. One array delete executes each necessary query only once compared to numerous single
deletes and can be faster. However, if the array is huge and covers a great portion of the table (say 20% of all rows) it
might be faster to go for the single version instead or batches of smaller arrays. Nested features are deleted with arrays
anyway.

The previously available CITYDB_DELETE_BY_LINEAGE package has been included into the CITYDB_DELETE
package and reduced to only one function. It allows to delete multiple city objects that share a common value in the
LINEAGE column of the CITYOBJECT table. The procedure cleanup_schema provides a convenient way to reset an
entire 3DCityDB instance under both Oracle and PostgreSQL. After invoking this procedure, all entries from all tables
are deleted and all sequences are reset.

The following table only lists functions that differ from each other where del_cityobject stands for the general layout
of a delete function:

2.10. Stored procedures and additional features 121

3D City Database for CityGML, Release 4.1

Table 2.25: API of CITYDB_DELETE package for Oracle

(lineage_value)

Function Return Type Explanation
cleanup_appearances ID_ARRAY Removes unreferenced
(only_global) Appearences incl.
SurfaceData and textures and
returns an array of
their IDs. Pass 1 (default) to only
delete global
appearances, or 0 to include local
appearances
cleanup_schema void Truncates most tables and resets
(schema_name) sequences in a
given 3D City Database schema
cleanup_table (table_name) ID_ARRAY Removes entries in given table
which are not
referenced by any other entities
del_cityobject (NUMBER) NUMBER Removes the CityObject with the
given ID incl.
all references to other tables. The
ID value
is returned on success
del_cityobject (ID_ARRAY) ID_ARRAY Removes CityObjects with the
given IDs incl.
all references to other tables. An
array of
IDs of successfully deleted objects
is returned
del_cityobjects_by_lineage ID_ARRAY Removes all CityObjects on behalf

of a LINEAGE

value and returns an array of their
IDs

122

Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.26: API of CITYDB_DELETE package for PostgreSQL

(lineage_value)

Function Return Type Explanation
cleanup_appearances SET OF INTEGER Removes unreferenced
(only_global) Appearences incl.
SurfaceData and textures and
returns an array of
their IDs. Pass 1 (default) to only
delete global
appearances, or 0 to include local
appearances
cleanup_schema void Truncates most tables and resets
(schema_name) sequences in a
given 3D City Database schema
cleanup_table (table_name) SET OF INTEGER Removes entries in given table
which are not
referenced by any other entities
del_cityobject INTEGER) INTEGER Removes the CityObject with the
given ID incl.
all references to other tables. The
ID value
is returned on success
del_cityobject (INTEGER]]) SET OF INTEGER Removes CityObjects with the
given IDs incl.
all references to other tables. An
array of
IDs of successfully deleted objects
is returned
del_cityobjects_by_lineage SET OF INTEGER Removes all CityObjects on behalf

of a LINEAGE

value and returns an array of their
IDs

2.10. Stored procedures and additional features

123

3D City Database for CityGML, Release 4.1

2.10.9 CITYDB_ENVELOPE

The package CITYDB_ENVELOPE provides functions that allow a user to calculate the maximum 3D bounding
volume of a CityObject identified by its ID. For each feature type, a corresponding function is provided starting with
env_ prefix. In PostgreSQL, they are part of an instance schema like ‘citydb’ and not ‘citydb_pkg’ due to unforeseen
schema changes by adding CityGML ADEs.

The bounding volume is calculated by evaluating all geometries of the city object in all LoDs including implicit
geometries. In PostGIS, they are first collected and then fed to the ST_3DExtent aggregate function which returns a
BOX3D object. In Oracle the aggregate function SDO_AGGR_MBR is used which produces a 3D optimized rectangle
with only two points. The box2envelope function turns this output into a diagonal cutting plane through the calculated
bounding volume. This surface representation follows the definition of the ENVELOPE column of the CITYOBJECT
table as discussed in Section 2.7.3.2 (see also Fig. 2.29). All functions in this package return such a geometry.

The CITYDB_ENVELOPE API also allows for updating the ENVELOPE column of the city objects with the calcu-
lated value (by simply setting the set_envelope argument that is available for all functions to 7). This is useful, for
instance, whenever one of the geometry representations of the city object has been changed or if the ENVELOPE
column could not be (correctly) filled during import and, for example, is NULL.

To calculate and update the ENVELOPE of all city objects of a given feature type, use the get_envelope_cityobjects
function and provide the OBJECTCLASS_ID as parameter. If 0 is passed as OBJECTCLASS_ID, then the ENVE-
LOPE columns of all city objects are updated. To update only those ENVELOPE columns having NULL as value, set
the only_if_null parameter to I.

124 Chapter 2. 3D City Database

3D City Database for CityGML, Release 4.1

Table 2.27: API of CITYDB_ENVELOPE package for PostgreSQL

Function

Return Type

Explanation

box2envelope (BOX3D)

GEOMETRY

Takes a BOX3D and returns a 3D
polygon that

represents a diagonal cutting plane
through this

box. Under Oracle the input is an
optimized 3D

rectangle
(SDO_INTERPRETATION = 3)

env_cityobject (cityobject_id,
set_envelope)

GEOMETRY

Returns the current envelope
representation of

the given CityObject and optionally
updates the

ENVELOPE column

get_envelope_cityobjects
(objectclass_id, set_envelope,
only_if_null)

GEOMETRY

Returns the current envelope
representation of

all CityObjects of given object class
and

optionally updates the ENVELOPE
column with

the individual bounding boxes

get_envelope_implicit_geometry
(implicit_rep_id, reference_point,
transformation_matrix)

GEOMETRY

Returns the envelope of an implicit
geometry

which has been transformed based
on the

passed reference point and
transformation

matrix

update_bounds (old_box,
new_box)

GEOMETRY

Takes two GEOMETRY objects to
call

box2envelope and returns the
result. If one

side is NULL, the non-empty input
is

returned.

2.10. Stored procedures and additional features

125

3D City Database for CityGML, Release 4.1

126 Chapter 2. 3D City Database

CHAPTER 3

Importer-Exporter

The 3D City Database Importer/Exporter is a Java-based front-end for the 3D City Database and allows for high-
performance loading and extracting 3D city model data.

3.1 Interfaces

The 3D City Database Importer/Exporter offers both a graphical user interface (GUI) and a command line interface
(CLI). The CLI allows for embedding the tool in batch processing workflows and third-party applications. The usage
of the CLI is documented in Section 3.8.

To launch the GUI, simply use the starter scripts located in the bin subfolder of the installation directory of the 3D
City Database Importer/Exporter. A desktop icon as well as shortcuts in the start menu of your operating system will
additionally be available in case you chose to create shortcuts during setup. Depending on your platform, one of the
following starter scripts is provided:

* 3DCityDB-Importer-Exporter.bat (Microsoft Windows family)
* 3DCityDB-Importer-Exporter.sh (UNIX/Linux/Mac OS family)
On most platforms, double-clicking the starter script or its shortcut runs the Importer/Exporter.

For some UNIX/Linux distributions, you will have to run the starter script from within a shell environment though.
Please open your favourite shell and first check whether execution rights are correctly set on the starter script. If not,
change to the installation folder and enter the following command to make the starter script executable for the owner
of the file:

chmod ut+x 3DCityDB-Importer-Exporter.sh

Afterwards, simply run the software by issuing the following command:

’./3DCityDBfImporterfExporter.sh

127

3D City Database for CityGML, Release 4.1

Note: With every release, the README.txt file in the installation folder provides up-to-date and version-specific
information on how to run the Importer/Exporter.

The starter scripts define default values for the Java Virtual Machine (JVM) that runs the Importer/Exporter. Most
importantly, they specify the minimum amount of main memory for the application through the —Xms parameter of
the JVM. The default value has been chosen to be reasonable for most platforms but may need to be adapted to your
needs before launching the application (e.g., if you want to increase or limit the available main memory).

The graphical user interface of the Importer/Exporter is organized into four main components as shown in Fig. 3.1. A
menu bar [1] is located either below (Windows, some Linux distributions) or above (Mac, some Linux distributions)
the title bar. The main application window is divided into an operations window [2] that renders the user dialogs of
the separate operations of the Importer/Exporter and a console window [4] that displays log messages. Via the View
entry in the menu bar, the console window can be detached from the main window and rendered in a separate window.
At the bottom of the operations window, a status bar [3] provides information about running processes and database
connections.

4 20 City Database Importer/Exr - [m} x
p——
File Project View Helﬁ I

[tmport] Export KML/COLLADA/GM:

Oatabase Preferences.

Remove

Versioning
Workspate

[Attribute Fiter

gml:id
gmi:nzme
[] Feature Counter
from = |
[] Bounding Box
@B K Reference system Same as in database
min e
L
Mode All overiapping features Just features inside

[Feature Types

Impart. Just validate

Readh Database msmnnec(eﬂl

Fig. 3.1: Organization of the Importer/Exporter GUIL.

The tab menu on top of the operations window lets you switch between the operations of the Importer/Exporter and
their user dialogs. The following tabs are available:

e Import: Import of CityGML models into the database
» Export: Export of city model data as CityGML
« KML/COLLADA/gITF Export: Export of city model data in KML, COLLADA or gITF format

» Database: Database connection settings and operations

128 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

* Preferences: Preference settings for each operation

Note: If you have installed plugins, the tab menu may contain additional entries. Please refer to the documentation
of your plugin in this case.

The main menu bar [1] offers the entries File, Project, View and Help. The File menu only contains one entry Exit to
close the application.

The Project menu lets a user store and load settings from a config file. The separate menu entries provide the following
functionality:

* Open Project...: Load a config file and recover all settings from this file.

¢ Save Project: Save all settings made in the GUI to the default config file.

* Save Project As...: Save all settings made in the GUI to a separate config file.
* Restore Default Settings: Set all settings to default values.

» Save Project XSD As...: Save the XML Schema defining the XML structure of config files to a separate file.
The XML Schema is helpful in case a user wants to manually edit the config file. Only config files conforming
to the XML Schema definition will be successfully loaded by the Importer/Exporter.

* Recently Used Projects...: List of recently loaded config files.

The Importer/Exporter uses one default config file per operating system user running the Importer/Exporter. All
settings made in the GUI are automatically stored to this default config file when the Importer/Exporter is closed
and are loaded from this file upon program start. The default config file is named project.xml and is stored in the
home directory of the user. Precisely, you will find the config file in the subfolder 3dcitydb/importer-exporter/config.
However, the location of the home directory differs for different operating systems. Using environment variables, the
location can be identified dynamically:

* %HOMEDRIVE%%HOMEPATH%3dcitydbimporter-exporterconfig (Windows 7 and higher)
* $HOME/3dcitydb/importer-exporter/config (UNIX/Linux, Mac OS families)

The View menu affects the GUI elements of the Importer/Exporter and offers the following entries:
* Open map window: Opens the 2D map window for bounding box selections (cf. Section 3.7).
* Detach Console: Renders the console window in a separate application window.
* Restore default perspective: Restores the GUI to its default settings.

Finally, the Help menu gives access to an Info dialog and the Read Me file shipped with the Importer/Exporter.
Amongst other information, the Info dialog displays the official version and build number of the Importer/Exporter.

3.2 Database connections and operations

The Database tab of the operations window shown in the figure below allows a user to manage and establish database
connections [1] and to execute database operations [2].

3.2.1 Managing and establishing database connections

In order to connect to an instance of the 3D City Database, valid connection parameters must be provided on the
Database tab.

3.2. Database connections and operations 129

3D City Database for CityGML, Release 4.1

. 2D City Database Importer/Exporter - O X
File Project View Help
Import Expart KML/COLLADAJQITF Export Database preferences
Connection |I:it]|'|':|:l w
Connection details
Desciption _l:itydh | Apply
Username -cityﬂb_user | New
Password |(esssss —
| Copy
/| Save password ———
_ - Delete
Type PostgreSQL/PostGIS v
SErver localhost Port 5432 |
Database citydb |
E‘d’leﬂla = detault =chems v| . FEtChSCh‘ElTﬂS
Info
Database operations
Workspace |Use default workspace Timestamp (DD.MM.YYY)
Databasze report | Bounding box | Indexes ADEs
Gener
Ready | Database disconnected

Fig. 3.2: Database tab.

130

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Mandatory database connection details comprise the username and password of the database user, the fype of the
database, the server name (network name or IP address) and port number (default: 1521 for Oracle; 5432 for Post-
greSQL) of the database server, and the database name (when using Oracle, enter the database SID or service name
here). The optional schema parameter lets you define the database schema you which to connect to. Leave it empty
to connect to the default schema. More information on how to work with multiple 3DCityDB schemas can be found
in Section 2.9. If you need assistance, ask your database administrator for connection details and schemas. For con-
venience, a user can choose to save the password in the config file of the Importer/Exporter. Please be aware that the
password will be stored as plain text.

To manage more than one database connection, connection details are assigned a short description text. The drop-
down list at the top of the Database tab allows a user to switch between connections based on their description. By
using the Apply, New, Copy and Delete buttons, edits to the parameters of the currently selected connection can be
saved, a new connection with empty connections details can be created, and existing connections can be copied or
deleted from the list.

The Connect | Disconnect button lets a user connect to / disconnect from a 3D City Database instance based on the
provided connection details.

Note: With this version of the Importer/Exporter, you will be able to connect to version 4.0 to 3.0 instances of the
3D City Database but not to any previous version. See Section 1.4 for a guide on how to migrate a version 2 and 3
instances of the 3D City Database to the latest version 4.0.

The console window logs all messages that occur during the connection attempt. In case a connection could not be
established, error messages are displayed that help to identify the cause of the connection problem. Otherwise, the
console window contains information about the connected 3D City Database instance like those shown in Fig. 3.3.
This information comprises the version of the 3D City Database, the name and version of the underlying database
system, the connection string, the schema name, the spatial reference system ID (SRID) as well as its name and GML
encoding (as specified during the setup of the 3D City Database), and whether the database tables are version-enabled.

. 3D City Database Importer/Exporter - Console — (Il >

Console
[10:-54:
[10:54:
[10:-54:
[10:54:
[10:-54:
[10:54:
[10:-54:
[10:54:
[10:-54-
[10:54:

o

IHNFO] Connecting to database profile "citydb’' .

INFD] Datsbase connection established.

INFO] 30 City Databkase: 4.0.0

INFO] DBMS: PostgreSQL 10.1

INFD] Connection: citydb user@localhost:5432/citydb

INFD] Schema: citydb

INFO] SRID: 25832 (Projected)

INFO] S5RS5: ETRS58S f UIM zone 32N

THFO] gml:srsWName: urn:ogc:def:cra,cr3:EPSE: 25832, cra:EPSGE:- 5783

L I i Y e O o N o Y o Y i Y i s |
[ST = Y = T = Y = T = 4 Y = L = LY = L T v 4}

INFO] Versioning: Mot supported

Fig. 3.3: Log messages for a successful database connection.

This information can be requested from a connected 3D City Database at any time using the Info button on the Database
tab. Upon successful connection, the description of the active connection is moreover displayed in the title bar of the
application window.

3.2. Database connections and operations 131

3D City Database for CityGML, Release 4.1

3.2.2 Executing database operations
After having established a connection to an instance of the 3D City Database, the Database tab (cf. [2] in Fig. 3.2)
offers the following database operations to be executed on that instance:

* Generating a database report;

* Calculating/updating the bounding box of selected feature types;

* Managing indexes on database tables;

* Managing the spatial reference system of the database; and

* Displaying supported CityGML ADE:s.
3.2.2.1 Generating a database report
A database report is a list of all tables of the 3D City Database together with their total number of rows. This operation

therefore provides a quick overview of the contents of the 3D City Database. The report is printed to the console
window.

Database operations

Workspace ﬂ Timestamp (DD.MM.YYY) [L

Database report Bounding box Indexes Reference system ADEs

| Generate database report

Fig. 3.4: Generating a database report.

If the database is version-enabled (Oracle only), the database report can be created for the contents of a specific
workspace [1] at a given timestamp [2]. If no workspace is specified, the default workspace is chosen per default
(Oracle: LIVE). If the workspace does not exist, a corresponding error message is provided. Workspaces are not a
feature of the 3D City Database but are managed through the Oracle Workspace Manager tool. Please refer to the Or-
acle database documentation for details. Since PostgreSQL currently does not support workspaces, the corresponding
input fields are disabled when connecting to a 3D City Database running on PostgreSQL.

3.2.2.2 Calculating/updating the bounding box

This dialog lets you calculate the 2D bounding box of the city objects stored in the database. The bounding box
is useful, for instance, as input to spatial filters in CityGML imports and exports as well as KML/COLLADA/gITF
exports (see documentation of the corresponding operations).

The coordinate values of the lower left (xmin, ymin) and upper right (xmax, ymax) corner of the calculated bounding
box are rendered in the corresponding fields of the dialog [3]. The values are also copied to the clipboard of your
operating system and can therefore easily be pasted into the import and export dialogs. You can also manually copy

the values to the clipboard by clicking the 3 button [4], or by right-clicking on a data field [3] and choosing the
corresponding option from the context menu.

The calculation of the bounding box can be restricted to a specific city object type such as Building or WaterBody
[1]. Like the generation of a database report, the user can request the bounding box for city objects living in a specific
workspace at a given timestamp if the database is version-enabled (Oracle only). The coordinate values can optionally

132 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

~ Databace operationg
Warkspace Timestamp (DD.MM.YYY)

Database report Bounding box Indexes Reference system ADEs

Bounding box for top-level feature core; ﬂ
‘ I Reference system | Same as in database

vm|

K-
Re all

Calculate

Fig. 3.5: Calculating the bounding box for selected feature types.

be transformed into a user-defined coordinate reference system that is available from the drop-down list [2]. Per default,
the coordinate values are presented in the same reference system as specified for the 3D City Database instance during
setup. See Section 2.8 for details on how to define and manage user-defined reference systems.

By using the map) button [4], the calculated bounding box is rendered in a separate 2D map window for visual
inspection as shown below. The usage of this map window is described in Section 3.7.

The calculation of the bounding box is based on the values stored in the ENVELOPE column of the CITYOBJECT
table. If this column is NULL or contains an incorrect value (e.g., in case the value could not correctly filled during
import or the geometry representation of a city object has been changed), then the resulting bounding box will be wrong
and subsequent operations might not provide the expected result. To fix the ENVELOPE values in the database, simply
let the Importer/Exporter create missing values (i.e., replace NULL values) or recreate all values by clicking on the
corresponding buttons [5]. This update process either affects only the city objects of a given feature type or all city
objects based on the selection made in [1].

Note: This process directly updates the ENVELOPE column of the affected city objects and might take long to
complete since the new values are calculated by evaluating all geometries of the city objects in all LoDs including
implicit geometries.

3.2.2.3 Managing indexes

The Importer/Exporter allows the user to manually activate or deactivate indexes on predefined tables of the 3D City
Database schema, and to check their status.

The operation dialog differentiates between spatial indexes on geometry columns and normal indexes on columns
with any other datatype [1]. The buttons Activate, Deactivate, and Status trigger a corresponding database process
on spatial indexes only, normal indexes only or both index types depending on which checkboxes are selected [1].
Again, the user can define a workspace and timestamp on which the operation shall be executed if the database is
version-enabled (Oracle only).

The index operations only affect the following subset of all indexes defined by the 3D City Database schema:
e Spatial index on column ENVELOPE of table CITYOBJECT
* Spatial index on column GEOMETRY of table SURFACE_GEOMETRY

3.2. Database connections and operations 133

3D City Database for CityGML, Release 4.1

@ 3D City Database Importer/Exporter - Map window X

| Berlin, 10117, Germany

2 match(es) returned from geocoder (0.276 s)

. Bounding box E

[13.3634949 | [13.413105 |

‘ Show ‘ ‘ Clear ‘

' Address lookup

Use popup menu for queries

(|, Geocoder service

|0SM Nominatim v|

0 Help

Click the link in the upper right corner
of the map for usage hints

G Show in Google Maps ‘

Y

Fig. 3.6: Map window for displaying and choosing bounding boxes. Note that the coordinate values of the bounding
box are shown in the upper left component.

Datahase operations

Woarkspace |Use defzult workspace Timestamp (DD.MM, YY) I:l

Database report Bounding box Indexes Reference system ADEs

[] Spatialindexes

] Mormal indexes

Activate | | Deactivate | | Status | VACUUM

Fig. 3.7: Managing spatial and normal indexes.

134

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

* Spatial index on column SOLID_GEOMETRY of table SURFACE_GEOMETRY

e Normal index on columns GMLID, GMLID_CODESPACE of table CITYOBJECT

* Normal index on column LINEAGE of table CITYOBJECT

e Normal index on columns GMLID, GMLID_CODESPACE of table SURFACE_GEOMETRY
e Normal index on columns GMLID, GMLID_CODESPACE of table APPEARANCE

* Normal index on column THEME of table APPEARANCE

e Normal index on columns GMLID, GMLID_CODESPACE of table SURFACE_DATA

e Normal index on columns GMLID, GMLID_CODESPACE of table ADDRESS

The result of an index operation is reported in the console window as shown below. For instance, Fig. 3.8 shows the
result of a status query on both spatial and normal indexes. The status ON means that the corresponding index is
enabled.

. 2D City Database Importer/Exporter - Console — O b4

Console

[L1:17:44 INFO] Checking spatial indemes...

[L1:17:44 INFO] ON: CITYOSJECT_ _EMVELOPE _SPX on ARAR.CITYOBJECT (ERVELOPRE

[L1:17:44 INFO] ON: SURFACE_GEOM SPX on ARA.SURFACE CEOMETRY (CECMETRY)

[L1:17:44 INFO] ON: SURFACE_GEOM SOLID SPX on AAR.SURFACE CECMETRY (SOLID GEOMETRY)
[11:17:44 INFO] Checking normal indemes...

[L1:17:44 INFO] ON: CITYOBJECT_IMX on AAR.CITYOQBJECT (GMLID, GMLID CODESPACE)
[11:17:44 INFQ] ON: CITYOBJECT LINEAGE INX on ARA.CITYOBJECT (LINERGE)
[L11:17:44 INFO] OW: SURFACE GECOM IMX on AAA.SURFACE CEOMETRY (GMLID, GMLID CODESPACE)

[11:17:44 INFOQ] ON: AFPFERRANCE IMK on AAR.AFFEARAMCE (GMLID, GMLID CODESPACE)
[11:17:44 INFO] ON: APPERRANCE THEME INK on ARA.APPERARANCE (THEME)

[11:17:44 INFO] ON: SURFACE DATA INK on RAR.SURFACE DATA(GMLID, GMLID CODESFACE
[11:17:44 INFO] ON: ADDRESS INX on AAA_ADDRESS [GMLID, GMLID CODESPRCE)

[11:17:44 INFO] Querying index status successfully finished.

Fig. 3.8: Result of a status query on spatial and normal indexes.

Note: It is strongly recommended to deactivate the spatial indexes before running a CityGML import on a big amount
of data and to reactive the spatial indexes afterwards. This way the import will typically be a lot faster than with spatial
indexes enabled. The situation may be different if only a small dataset is to be imported.

Warning: Activating and deactivating indexes can take a long time, especially if the database fill level is high.
Note that the operation cannot be aborted by the user since this would result in an inconsistent database state.

3.2.2.4 Managing the spatial reference system of the database

When setting up a 3DCityDB instance, you have to choose a spatial reference system (SRS) by picking a spatial
reference ID (SRID) supported by the database and a corresponding SRS name identifier (gm!l:srsName) that is used
in CityGML exports (see and Section 1.3). These settings can be easily changed at any later time using the reference
system operation.

After connecting to a 3DCityDB, the SRID and gml:srsName input fields shown in the above dialog [1] are assigned
the current values from the database. Simply edit the fields to pick a new SRID or SRS name identifier. Since changing

3.2. Database connections and operations 135

3D City Database for CityGML, Release 4.1

Database operations

Workspace Timestamp (DD.MM,YYY) .

Database report Bounding box Indexes Reference system aDEs

SRID 25832 | Edt | | d
aml:srsName | urniogc:deficrsEPSG: 125832

Geometries | (@ Transform coordinates (O) Only update metadata

‘ Restore ‘ . Apply

Fig. 3.9: Changing the SRS information of the 3DCityDB instance.

the SRID potentially affects all geometries in your database and thus may take a long time to complete, the SRID field
is disabled per default. Click on Edit [2] to enable changes to this field. Use the Check button [2] to make sure that
your new SRID value is supported by the database. The gml:srsName field provides a drop-down list of common SRS
identifier encoding schemes (such as OGC URN encoding, see Section 2.8). You may pick one of these proposals (be
careful to replace the HEIGHT_SRID token with the correct value if required) or enter any other value.

When changing the SRID, you can choose whether the coordinates of geometry objects already stored in the database
should be transformed to the new SRID or whether only the metadata should be updated [3]. The latter option might
be enough, for example, if you accidentally picked a wrong SRID that does not match the imported geometries when
setting up the database, and you simply want to correct this mistake.

Click on Apply to update the reference system information in the database according to your settings. The Restore
button lets you discard any changes made to the SRID and gml:srsName fields.

Note: If you just want to use different gmi:srsName values for different CityGML exports, then instead of changing
the identifier in the database before every export it is simpler to create multiple user-defined reference systems for the
same SRID (cf. Section 3.6.4) and pick one for each CityGML export (cf. Section 3.4).

3.2.2.5 Displaying supported CityGML ADEs

This tab provides a list of all CityGML Application Domain Extensions (ADEs) that are registered in the 3DCityDB
instance and/or are supported by the Importer/Exporter. The following screenshot shows the corresponding dialog.

The ADE table [1] contains one entry per CityGML ADE. Each entry lists the name and the version of the ADE and
indicates whether it is supported by the database and/or the Importer/Exporter (using check or cross signs). Database
support requires that the ADE has been successfully registered in the 3DCityDB instance using the ADE Manager
Plugin (see Section 3.9.3). Additional support by the Importer/Exporter requires that a corresponding ADE extension
has been copied into the ade-extensions folder within the installation directory of the Importer/Exporter. Only if both
conditions are met both fields will contain a check sign. If no ADE has been detected upon database connection, the
table remains empty.

In the example of Fig. 3.10, there is only an Importer/Exporter extension for an ADE called TestADE but the connected
3DCityDB instance lacks support for it. TestADE data would therefore not be handled by the Importer/Exporter and
thus not stored into the database in this scenario.

If you select an entry in the ADE table and click the Info button (or simply double-click on the entry), metadata about
the ADE will be displayed in a separate window as shown below. The Status field shows whether the ADE is fully

136 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Database operations

Workspace |Use default workspace Timestamp (DD.MM. YY) .

Database report Boundingbox Indexes Reference system ADES

Mame Version Database Importer [Exporter
TestADE L0 X v |

Fig. 3.10: Table of all supported CityGML ADEs.

supported, or some user action is required.

3.3 Importing CityGML files

To load 3D city model content into a 3D City Database instance, the Importer/Exporter supports the import of
CityGML files. Supported CityGML versions are 2.0.0, 1.0.0 and 0.4.0. The CityGML import operation is avail-
able on the Import tab of the operations window as shown below.

Input file selection. At the top of the Import dialog [1], a list of one or more CityGML files to be imported must be
provided. Files can be selected through clicking on the Browse button, which opens a regular file selection dialog.
Alternatively, you can drag&drop files from your preferred file explorer onto the Import tab. If the file list already
contains entries, the drag&drop operation will replace its content. If you want to keep the previous entries and only
append additional files, keep the CTRL key pressed while dropping (on Windows). The Remove button or DEL key
lets you remove selected entries from the input files. Note that adding folders to the list is also supported. Each folder
will be recursively scanned for CityGML files, and every CityGML file found will be imported.

The importer supports the following file formats for CityGML datasets: 1) regular XML files (*.gml, *.xml), 2) GZIP
compressed XML files (*.gz, *.gzip), and 3) ZIP archives (*.zip). ZIP archives are recursively scanned for contained
XML files. Additional files such as texture images will also be imported from the ZIP archive if they are correctly
referenced from the XML file(s) using relative paths within the ZIP archive.

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the name of the workspace
into which the data shall be imported can be specified [2]. If no workspace is given, the default workspace is assumed
(Oracle: LIVE).

Note: Importing into version-enabled tables typically takes considerably more time than importing into non-version-
enabled tables. The import time can be reduced if spatial indexes are disabled beforehand.

Import filter. The import dialog allows for setting thematic and spatial filter criteria to narrow down the set of
CityGML top-level features that are to be imported from the input files. The checkboxes on the left side of the import
dialog let you choose between an attribute filter, a feature counter filter, a spatial bounding box filter and a feature
type filter. If more than one filter is chosen, then the filter criteria are combined in a logical AND operation. If no
checkbox is enabled, no filter criteria are applied and thus all CityGML features contained in the input file(s) will be
imported.

3.3. Importing CityGML files 137

3D City Database for CityGML, Release 4.1

I&, ADE information

TestADE 1.0

Name

Version

Description

Identifier
CityGML
Status

TestADE
1.0
Test ADE

08b4f55820d9dacd999223c2c4b00dae

200 []10.0
(® The ADE must be registered in the database.

Top-level features

Features

Database
Table prefix

ObjectClassid

test: IndustrialBuilding
test:OtherCaonstruction

test
10000 .. 10010

XML schema
Namespaces

http:ffaww, dtyaml.orgfade/TestADE/1.0

Ok

Prefix test

Fig. 3.11: ADE metadata dialog.

138

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

ﬁ. 3D City Database Importer/Exporter - O X
File Project WView Help

Import Export KML/COLLADA/QITF Export Database Preferences

—Versioning

Workspace

Attribute Filter
gml:id

gml:name

Feature Counter

from # | | toz
Coin 2o

ﬂ ® oReference system Same as in database

X min | | X |

Ymin I | Y max |

Mode (@ All overlapping features () Just features inside

Feature Types -

= [] CityObject
=+t [] Bridge
&+ [] Building
- [C] CityFurniture
1 [[] CityObjectGroup
'+ [] Generics
i+ [] LanduUse
i [] Relief
b [T] Transportation
28] Tunnel
[+t [[] Vegetation
i [] WaterBody

Import o o Just validate

Ready | Database disconnected

Fig. 3.12: The CityGML import dialog.
3.3. Importing CityGML files 139

3D City Database for CityGML, Release 4.1

 Attribute filter: This filter takes a gml:id and/or a gml:name as parameter [3] and only imports CityGML
features having a matching value for the respective attribute. More than one gml:id can be provided in a comma-
separated list. Multiple gml:name values are not supported though.

* Counter filter: The feature counter filter lets you import a subset of the top-level features based on their position
index over all input file(s). Simply provide the lower and upper boundary [4] for the position index to define the
subset (both boundary limits are inclusive).

¢ Bounding box filter: This filter takes a 2D bounding box as parameter that is given by the coordinate values of
its lower left (xmin, ymin) and upper right corner (xmax, ymax) [5]. The bounding box is evaluated against the
gml:boundedBy property of the CityGML input features. You can choose whether features overlapping with the
provided bounding box are to be imported, or whether features must be inside of it.

» Feature type filter: With the feature types filter, you can restrict the import to one or more CityGML features
types by enabling the corresponding checkboxes [7]. Only features of the chosen type(s) will be imported.

Note: All filters only work on top-level features but not on nested sub-features.

For the bounding box filter, make sure that you choose a coordinate reference system from the drop-down choice list
that matches the provided coordinate values. Otherwise, the spatial filter may not work as expected. The coordinate
reference system list can be augmented with user-defined reference systems (see Section 3.6.4 for more information).

The coordinate values of the bounding box filter can either be entered manually or chosen interactively in a 2D map

window. To open the map window, click on the map button *! [6].

In the map window, keep the left mouse button clicked while holding the ALT key. This lets you draw a bounding box
on the map. In order to move the map to a specific location or address, simply enter the location or address in the input
field on top of the map and click the Go button or use the map navigation controls. If you are happy with the bounding
box selection, click the Apply button. This will close the map window and carry the coordinate values of the selected
area into the corresponding fields of the bounding box filter [5]. Click Cancel if you want to close the map window
but skip your selection. A more comprehensive guide on how to use the map window is provided in chapter Section
3.7.

With the £ button on the bounding box filter dialog [6], you can copy a bounding box to the clipboard, while the i
button pastes a bounding box from the clipboard to the input fields of the bounding box filter [5] (or use the right-click
context menu).

XML validation. Before importing, the CityGML input files can be validated against the official CityGML XML
schemas. Simply click the Just Validate button [9] in order to run the validation process. Filter settings are not
considered in this process. Note that this operation does not require internet access since the XML schemas are
packaged with the application. The CityGML features are not imported into the database during validation. The
validation results are printed to the console window.

Note: Itis strongly recommended that only CityGML files having successfully passed XML validation are imported
into the database. Otherwise, errors in the data may lead to unexpected behavior or abnormal termination.

Import preferences. More fine-grained preference settings affecting the CityGML import are available on the Prefer-
ences tab of the operations window. Make sure to check these settings before starting the import process. A full docu-
mentation of the import preferences is available in Section 3.6.1. The following table provides a summary overview.

140 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

O 3D City Database Importer/Exporter - Map window X

i e

? Show usage hints
... Bounding box @ ‘z _:l:)'a — 332’.‘\:“@ .? fl—m,::c?— $ ‘ mj.i.]
& S N {‘e\’ﬁe“‘@ Xy (T

T .
T Brunhi
P N Y T

e e
LY

[13.3509244 | [13.3633588 |' R - — %F 2
- H
‘ Show H Clear ‘ | | 2 E. j:

o
|

‘I Hal
|

' Address lookup

Use popup menu for queries

(|, Geocoder service

|0SM Nominati v

o
@ Help

Click the link in the upper right corner
of the map for usage hints

—=

0l

= Park O] |

Fig. 3.13: Bounding box selection using the 2D map window.

3.3. Importing CityGML files 141

3D City Database for CityGML, Release 4.1

Table 3.1: Summary overview of the import preferences

Preference name Description

Continuation Metadata that is stored for every object in the database
such as the data

lineage, the updating person or the creationDate
property.

gml:id handling Generates UUIDs where gml:ids are missing on input
features or replaces all

gml:ids with UUIDs.

Address Controls the way in which XAL address fragments are
imported into the
database.
Appearance Defines whether appearance information is imported.
Geometry Allows for applying an affine transformation to the

input geometry.

Indexes Settings for automatically enabling/disabling spatial
and normal indexes

during imports.

XML validation Performs XML validation automatically and exclude
invalid features from

being imported.

XSL transformation Defines one or more XSLT stylesheets that shall be
applied to the city objects

in the given order before import.

Import log Creates a list of all successfully imported CityGML
top-level features.

sources Allocation of computeg fesources used 1n the 1mpport
155 operation P &lap er 3. sIempor er-Exporter

3D City Database for CityGML, Release 4.1

CityGML import. Once all import settings are correct, the Import button [8] starts the import process. If a database
connection has not been established manually beforehand, the currently selected entry on the Database tab is used to
connect to the 3D City Database. The separate steps of the import process as well as all errors that might occur during
the import are reported to the console window, whereas the overall progress is shown in a separate status window. The
import process can be aborted at any time by pressing the Cancel button in the status window. The Importer/Exporter
will make sure that all pending city objects are completely imported before it terminates the import process.

After having completed the import, a summary of the imported CityGML top-level features is printed to the console
window.

Note: The import operation does not automatically apply a coordinate transformation to the internal reference
system of the 3D City Database instance. Thus, if the coordinate reference system of the CityGML input data does
not match the coordinate reference system defined for the 3D City Database instance, the user must transform the
coordinate values before importing the data (or use an affine transformation during import if this is enough). A
possible workaround procedure can be realized as follows:

1) Set up a second (temporary) instance of the 3D City Database with an internal CRS matching the CRS of the
CityGML instance document.

2) Import the dataset into this second 3D City Database instance.

3) Export the data from this second instance into the target CRS by applying a coordinate transformation (see
CityGML export documentation in Section 3.4).

4) The exported CityGML document now matches the CRS of the target 3D City Database instance and can be
imported into that database. The temporary database instance can be dropped.

Alternatively, you can change the reference system in the database to the one used by the imported geometries (see the
corresponding database operation in Section 3.2.2).

Note: The Importer/Exporter does not check by any means whether a CityGML feature from an input file already
exists in the database. Thus, if an import is executed twice on the same dataset, all CityGML features contained in the
dataset will be imported twice.

3.4 Exporting to CityGML

3D city model content stored in a 3D City Database instance can be fully or partially exported as CityGML datasets.
The CityGML export is available on the Export tab of the operations window as depicted in the following figure.

Output file selection. At the top of the export dialog, the folder and filename of the target CityGML dataset must be
specified [1]. You can either manually enter the target file or open a file selection dialog via the Browse button.

The exporter supports the following file formats for writing CityGML datasets: 1) regular XML files (*.gml, *.xml),
2) GZIP compressed XML files (*.gz, *.gzip), and 3) ZIP archives (*.zip). Simply make sure to add the file extension
of the file format of your choice to the name of the target file in [1]. When choosing ZIP as target format, then all
additional files such as texture images are also written into the ZIP container per default.

The export operation supports tiled exports, which typically results in multiple datasets being written to the file system.
Nevertheless, also for tiled exports, only a single target file must be specified. More details on tiled exports are provided
below and in Section 3.6.2.2.

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the name of the workspace
and the timestamp from which the data shall be exported can be specified [2]. If no workspace is provided, the default
workspace is assumed (Oracle: LIVE).

3.4. Exporting to CityGML 143

3D City Database for CityGML, Release 4.1

D City Database Importer/Exporter

File Project View Help

Import Export KML/COLLADA/QITF Expert Database Preferences

~Versioning and coordinate transtormation
Workspace

Timestamp (DD.MM.

Reference system Same as in database

Attribute Filter SQL Filter

aml:id |
gml:name |
|

citydb:lineage

LoD Filter
[] oo [LeD1

[] Dbz [LoD3

Feature Counter
from #

Bounding Box
Q0 &

X

Reference system Same as

min |

| ¥ max

¥ miin

Filter mode

or Search depth = .

Mode (@ Al overlapping features

() Just features inside () Tiling

Feature Types
=1 [] CityObject

+ [] Bridge

+ [] Building

+ [7] CityFurniture
+ [[] CityObjectGroup
+l [] Generics

[] LandUse

b [] Relief

+ [[] Transportation
3 7] Tunnel

+ 7] Vegetation

+ [[] WaterBody

Rows ']. Columns |1

o Use XML query

Ready

Database disconnected |

Fig. 3.14: The CityGML export dialog.

144

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Coordinate transformation. In general, coordinate values of geometry objects are associated with the coordinate
reference system defined for the 3D City Database instance during setup and are exported “as is” from the database.
The export operation allows a user to apply a coordinate transformation to another reference system during export.
The target coordinate reference system is chosen from the corresponding drop-down list [3]. This list can be aug-
mented with user-defined reference systems (cf. Section 3.6.4 for more details). When picking the entry “Same as in
database”, no transformation will be applied (default behavior).

Simple export filters. Like the import of CityGML datasets, the export operation supports thematic and spatial filter
criteria to restrict exports to subsets of the 3D city model content. The checkboxes on the left side of the export dialog
let you choose between an attribute filter, an SQL filter, an LoD filter, a feature counter filter, a spatial bounding box
filter and a feature type filter [4]. If more than one filter is chosen, then the filter criteria are combined in a logical
AND operation. If no checkbox is enabled, no filter criteria are applied and thus all CityGML features contained in
the database will be exported.

The export filters work similar to the ones on the Import tab. Please refer to Section 3.3 for a description of the filter
settings that are common to both operations.

 Attribute filter: This filter lets you define values for the attributes gml:id, gml:name and citydb:lineage which
must be matched by city objects to be exported. More than one gml:id can be provided in a comma-separated
list. Multiple gml:name or citydb:lineage values are not supported though.

* SQL filter: The attribute filter only operates on predefined attributes (see above). To overcome this limitation,
you can alternatively choose the SQL Filter tab and enter an arbitrary SELECT statement into the input field.
The query must return a list of database ids of the city objects to be exported (i.e., references to the column ID
of the table CITYOBJECT). The SQL filter is very powerful as you can access every column of every table in
the 3DCityDB and make use of all functions and operations offered by the underlying database system to define
your filter. More information about the SQL filter is provided in chapter Section 3.4.1.

* Bounding box filter: The bounding box filter takes the same parameters as on the Import tab. It is evaluated
against the ENVELOPE column of the CITYOBJECT table. The user can choose whether the bounding box
of top-level features only needs to overlap with or must be strictly inside the filter geometry to satisfy the filter.
Alternatively, the export can be tiled by splitting the bounding box into a regular grid. The number of rows and
columns can be defined by the user. Each tile of this grid is exported into its own file. To make sure that every
city object is assigned to one tile only, the center point of its envelope is checked to be either inside or on the
left or top border of the tile.

* LoD filter: This filter allows for exporting only specific LoDs of the city objects. The LoD selection can be
either AND or OR combined. City objects not having a spatial representation in one (OR) or all (AND) of the
selected LoDs will not be exported. The search depth parameter specifies how many levels of nested city objects
shall be considered when searching for matching LoD representations.

When exporting 3D city model content to a single CityGML file, the file size may quickly grow. Although the
Importer/Exporter supports writing files of arbitrary size (only limited by the file system of the operating system),
such files might become too big to be processed by other applications. A bounding box filter with tiling enabled is
useful in this case because the contents of each tile are written to separate and thus smaller files. The output files
are put into subfolders, and the names of both the subfolders and the output files can be augmented with tile-specific
suffixes (see the tiling options of the export preferences).

Note: Both the gml:name and the citydb:lineage filter internally use an SQL LIKE operator and wildcards for
identifying matches. For example, if you provide the string “castle” as gml:name, this will be translated to “LIKE
‘Yocastle%’” in the SQL query.

Note: When choosing a spatial bounding filter, make sure that spatial indexes are enabled so that filtering can be
performed on the database (use the index operation on the Database tab to check the status of indexes, cf. Section

3.4. Exporting to CityGML 145

3D City Database for CityGML, Release 4.1

3.2.0).

Note: If the entire 3D city model stored in the 3DCityDB instance shall be exported with tiling enabled, then a
bounding box spanning the overall area of the model must be provided. This bounding box can be easily calculated
on the Database tab (cf. Section 3.2.2).

Note: Using the center point of the envelope as criterion for a tiled export has a side-effect when tiling is combined
with the counter filter: the number of city objects on the tile can be less than the number of city objects returned by
the database query because the tile check happens after the objects have been queried. Therefore, the counter filter
only sets a possible maximum number in this filter combination. This is a correct behavior, so the Importer/Exporter
will not report any errors.

Note: The feature type filter in general behaves like for the CityGML import. However, regarding city object groups
the following rules apply:

1) If only the feature type CityObjectGroup is checked, then all city object groups and all their group members
(independent of their feature type) are exported.

2) If further feature types are selected in addition to CityObjectGroup, then only group members matching those
feature types are exported. Of course, all features that match the type selection but are not group members are also
exported.

Advanced XML export query. The export can also be controlled through a more advanced query expression. In
addition to the filter capabilities explained above, a query expression offers logical operators (AND, OR, NOT) that
combine thematic and spatial filters to complex conditions. Moreover, it allows for defining projections on the prop-
erties of the exported city objects and provides a filter for different appearance themes. Operators like the LoD filter
or tiling are, of course, also available for query expressions.

Query expressions are encoded in XML using a <citydb:query> element. The query language used has been developed
for the purpose of the 3DCityDB but is strongly inspired by and very similar to the OGC Filter Encoding 2.0 standard
and the query expressions used by the OGC Web Feature Service 2.0 standard.

To enter an XML-based query expression, click on the Use XML query button [6] at the bottom right of the export
dialog (cf. Fig. 3.14). The simple filter settings dialog will be replaced with an XML input field like shown below.

The XML query is entered in [7]. This requires knowledge about the structure and the allowed elements of the query
language. A documentation of the query language is provided in Section 3.4.2.

The new query button O on the right side of the input field [8] can be used to create an empty query element that

contains all allowed subelements. The copy query button L_"!:l translates all settings defined on the simple filter dialog
(cf. Fig. 3.14) to an XML query. The results of both actions can therefore be used as starting point for defining your

own query expression. The validate query button v [8] performs a validation of the query entered in [7] and prints
the validation report to the console window. Only valid query expressions are accepted by the export operation. The
Use simpe filter button [9] takes you back to the simple filter dialog.

You can also use an external XML editor to write XML query expressions. External editors might be more comfortable
to use and often offer additional tools like auto completion. The XML Schema definition of the query language
(required for validation and auto completion) can be exported via “Project Save Project XSD As...” on the main
menu of the Importer/Exporter (cf. Section 3.1). Make sure to use a <query> element as root element of the query
expression in your external XML editor.

146 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

i 30D City Database Impaorter/Exparter - O *
File Project View Help

Import Export KML/COLLADA/gITF Export Datsbase Preferences

| Browse
Versioning and coordinate transfarmation
Workspace Timestamp (DD.MM.YYY) |
Reference system Same as in database

B <query xmlns="http://www.3dcitydb.org/importer-exporter/config"» ~1 O
[<«typeNames>
<typeName xmlns:core="http://www.opengis.net/citygml/2.8">core:_CityObject</typeName> I-_E;]
1 </ typeNames>
@ <filter»
= cresourceldss
<id>building_@815¢/id>
</resourcelds>
<ffilter>
</query>

Export o Use simple filter

Darabase disconnected

Ready

Fig. 3.15: Input field to enter an XML-based query expression for CityGML exports.

Export preferences. In addition to the settings on the Export tab, more fine-grained preference settings affecting the
CityGML export are available on the Preferences tab of the operations window. Make sure to check these settings
before starting the export process. A full documentation of the export preferences can be found in Section 3.6.2. The
following table provides a summary overview.

3.4. Exporting to CityGML 147

3D City Database for CityGML, Release 4.1

Table 3.2: Summery overview of the export preferences

Preference name Description
CityGML version CityGML version to be used for exports.
Tiling options More settings for tiled exports. Requires that tiling is

enabled on the
bounding box filter.

CityObjectGroup Defines whether group members are exported by value
or by reference.

Address Controls the way in which xAL address fragments are
exported from the
database.
Appearance Defines whether appearance information is exported.
XLinks Controls whether referenced features or geometry

objects are exported using
XLinks or as deep copies.

XSL transformation Defines one or more XSLT stylesheets that shall be
applied to the exported

city objects in the given order before writing them to
file.

Resources Allocation of computer resources used in the export
operation.

CityGML export. Having completed all settings, the CityGML data export is triggered with the Export button [5]
at the bottom of the dialog (cf. Fig. 3.14). If a database connection has not been established manually beforehand,
the currently selected entry on the Database tab is used to connect to the 3D City Database. Progress information is
displayed within a separate status window. This status window also offers a Cancel button that lets a user abort the
export process. The separate steps of the export process as well as possible error messages are reported to the console
window.

148 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

3.4.1 SQL queries

The simple filter settings on the Export tab of the Importer/Exporter support user-defined SQL queries. The figure
below shows the corresponding SQL input field.

Attribute Filter SQL Filter

| select cityobject_id from cityobject_genericattrib
2 where attrname="energy_level' and realvalue < 12

Fig. 3.16: Input field to enter a SQL query for CityGML exports.

The SQL query is entered in [1]. The + and - buttons [2] on the right side of the input field allow for increasing or
reducing the size of the input field.

In general, any SELECT statement supported by the underlying database system can be used as SQL filter. The query
may operate on all tables and columns of the database instance and may involve any database function or operator.
The SQL filter therefore provides a high degree of flexibility for querying content from the 3DCityDB.

The only mandatory restriction is that the SQL query must return a list of ID values of the selected city objects. Put
differently, the result set returned by the query may only contain a single column with references to the ID column of
the CITYOBJECT table. The name of the result column can be freely chosen, and the result set may contain duplicate
ID values. Of course, it must also be ensured that the SELECT statement follows the specification of the database
system.

The following example shows a simple query that selects all city objects having a generic attribute of name en-
ergy_level with a double value less than 10.

select cityobject_id from cityobject_genericattrib where attrname='energy_level' and
—realval < 10

The CITYOBJECT_ID column of CITYOBJECT_GENERICATTRIB stores foreign keys to the ID column of CITY-
OBJECT. The return set therefore fulfills the above requirement.

Note that you do not have to care about the type of the city objects belonging to the ID values in the return set. Since the
SQL filter is evaluated together with all other filter settings on the Export tab, the export operation will automatically
make sure that only top-level features in accordance with the feature type filter are exported. For example, the above
query might return ID values of buildings, city furnitures, windows or traffic surfaces. If, however, only buildings have
been chosen in the feature type filter, then all ID values in the result set not belonging to buildings will be ignored.
This allows for writing generic queries that can be reused in different filter combinations. Of course, you may also
limit the result set to specific city objects if you like.

The following example illustrates a more complex query selecting all buildings having at least one door object.

select
t.building_id
from
thematic_surface t
inner join
opening_to_them_ surface o2t on o2t.thematic_surface_id = t.id
inner join
opening o on o.id = o2t.opening_id

(continues on next page)

3.4. Exporting to CityGML 149

3D City Database for CityGML, Release 4.1

(continued from previous page)

where

o.objectclass_id = 39
group by

t.building_id
having

count (distinct o.1id) > 0

Security note: Other statements than SELECT such as UPDATE, DELETE or DDL commands will be rejected and
yield an error message. However, in principle, it is possible to create database functions that can be invoked with a
SELECT statement and that delete or change content in the database. An example are the DELETE functions offered
by the 3DCityDB itself (cf. Section 2.10.8). For this reason, the export operation scans the SQL query for these
well-known DELETE functions and refuses to execute it in case one is found. However, similar functions can also be
created after setting up the 3DCityDB schema and thus are not known to the export operation a priori. If such functions
exist and a user of the Importer/Exporter shall not be able to accidentically invoke them through an SQL query, then it
is strongly recommended that the user may only connect to the 3DCityDB instance via a read-only user (cf. Section
2.9.2).

3.4.2 XML query expressions

A query expression is an action that directs the export operation to search the 3DCityDB for city objects that satisfy
some filter expression encoded within the query. Query expressions are given in XML using a <query> root element.
The XML language used is specific to the Importer/Exporter and the 3DCityDB but draws many concepts from OGC
standards such as Filter Encoding (FE) 2.0 and Web Feature Service (WFES) 2.0.

Note: All XML elements of the query language are defined in the XML namespace http://www.3dcitydb.org/
importer-exporter/config. Simply define this namespace as default namespace on your <query> root element.

A query expression may contain a typeNames parameter, a projection clause, a selection clause, a counter filter, an
LoD filter, an appearance filter, tiling options and a fargetSrid attribute for coordinate transformations.

* <typeNames>: Lists the name of one or more feature types to query (optional).

» <propertyNames>: Projection clause that identifies a subset of optional feature properties that shall be kept or
removed in the target dataset (optional).

« <filter>: Selection clause that specifies criteria that conditionally select city objects from the 3DCityDB (op-
tional).

* <count>: Limits the number of requested city objects that are exported to the target dataset (optional).
¢ <lod>: Limits the LoDs of the exported city objects to a given subset (optional).

* <appearance>: Limits the appearances of the exported city objects to a given subset (optional).
 <tiling>: Defines a tiling scheme for the export (optional).

« targetSrid: Defines a coordinate transformation (optional).

3.4.2.1 <typeNames> parameter

The <typeNames> parameter lists the name of one or more feature types to query from the 3DCityDB. Each name is
given as xsd:QName and must use an official XML namespace from CityGML 2.0 or 1.0. Only top-level feature types
are supported. The CityGML version of the associated XML namespace determines the CityGML version used for
the export dataset. Namespaces from different CityGML versions shall not be mixed.

150 Chapter 3. Importer-Exporter

http://www.3dcitydb.org/importer-exporter/config
http://www.3dcitydb.org/importer-exporter/config

3D City Database for CityGML, Release 4.1

The following example shows how to query CityGML 2.0 bridges and buildings:

<query xmlns="http://www.3dcitydb.org/importer—-exporter/config">
<typeNames>
<typeName xmlns:brid="http://www.opengis.net/citygml/bridge/2.0">brid:Bridge</
—typeName>
<typeName xmlns:bldg="http://www.opengis.net/citygml/building/2.0">bldg:Building</
—typeName>
</typeNames>
</query>

If you want to query all feature types, then simply use the name core:_CityObject of the abstract base type in CityGML,
or just skip the <typeNames> paramenter.

The following table shows all supported top-level feature types together with their official CityGML XML names-
pace(s) and their recommended XML prefix.

3.4. Exporting to CityGML 151

3D City Database for CityGML, Release 4.1

Table 3.3: Supported CityGML top-level feature types together with their

XML namespace.

Feature type XML prefix XML namespace

_CityObject core http://www.opengis.net/citygml/2.0
http://www.opengis.net/citygml/1.0

Building bldg http://www.opengis.net/citygml/
building/2.0
http://www.opengis.net/citygml/
building/1.0

Bridge brid http://www.opengis.net/citygml/
bridge/2.0

Tunnel tun http://www.opengis.net/citygml/

tunnel/2.0

TransportationComplex

tran

http://www.opengis.net/citygml/
transportation/2.0
http://www.opengis.net/citygml/
transportation/1.0

Road

tran

http://www.opengis.net/citygml/
transportation/2.0
http://www.opengis.net/citygml/
transportation/1.0

Track

tran

http://www.opengis.net/citygml/
transportation/2.0
http://www.opengis.net/citygml/
transportation/1.0

Road

tran

http://www.opengis.net/citygml/
transportation/2.0
http://www.opengis.net/citygml/
transportation/1.0

185Quare

tran

htiCHapter@crimportersExporter

transportation/2.0

http://www.opengis.net/citygml/
transportation/1.0

http://www.opengis.net/citygml/2.0
http://www.opengis.net/citygml/1.0
http://www.opengis.net/citygml/building/2.0
http://www.opengis.net/citygml/building/2.0
http://www.opengis.net/citygml/building/1.0
http://www.opengis.net/citygml/building/1.0
http://www.opengis.net/citygml/bridge/2.0
http://www.opengis.net/citygml/bridge/2.0
http://www.opengis.net/citygml/tunnel/2.0
http://www.opengis.net/citygml/tunnel/2.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/cityfurniture/2.0
http://www.opengis.net/citygml/cityfurniture/2.0
http://www.opengis.net/citygml/cityfurniture/1.0
http://www.opengis.net/citygml/cityfurniture/1.0
http://www.opengis.net/citygml/landuse/2.0
http://www.opengis.net/citygml/landuse/2.0
http://www.opengis.net/citygml/landuse/1.0
http://www.opengis.net/citygml/landuse/1.0
http://www.opengis.net/citygml/waterbody/2.0
http://www.opengis.net/citygml/waterbody/2.0
http://www.opengis.net/citygml/waterbody/1.0
http://www.opengis.net/citygml/waterbody/1.0
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/1.0
http://www.opengis.net/citygml/vegetation/1.0
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/1.0
http://www.opengis.net/citygml/vegetation/1.0
http://www.opengis.net/citygml/relief/2.0
http://www.opengis.net/citygml/relief/2.0
http://www.opengis.net/citygml/relief/1.0
http://www.opengis.net/citygml/relief/1.0
http://www.opengis.net/citygml/generics/2.0
http://www.opengis.net/citygml/generics/2.0
http://www.opengis.net/citygml/generics/1.0
http://www.opengis.net/citygml/generics/1.0
http://www.opengis.net/citygml/cityobjectgroup/2.0
http://www.opengis.net/citygml/cityobjectgroup/2.0
http://www.opengis.net/citygml/cityobjectgroup/1.0
http://www.opengis.net/citygml/cityobjectgroup/1.0

3D City Database for CityGML, Release 4.1

In order to simplify typing the <typeNames> parameter, you can skip the namespace declaration from the type names.
The Importer/Exporter will then assume the corresponding CityGML 2.0 namespace, but only if you use the recom-
mended XML prefix from the table above. The listing below exemplifies how to use this simplification to query all
city furniture objects from the 3DCityDB.

<query>
<typeNames>
<typeName>frn:CityFurniture</typeName>
</typeNames>
</query>

3.4.2.2 <propertyNames> projection clause

The <propertyNames> parameter identifies a subset of optional feature properties that shall be kept or removed in the
target dataset. Property projections can be defined for all feature types that are part of the export, and thus not just for
top-level feature types but also for nested feature types.

The <propertyNames> parameter consists of one ore more <context> subelements, each of which must define the
target feature type through the rypeName attribute. A context then lists the name of one ore more feature properties
and/or generic attributes. The mode attribute determines the action for these properties: 1) if set to keep, then only the
listed properties are kept in the target dataset, and all other properties are deleted from the feature (default); 2) if set to
remove, then only the listed properties are deleted from the feature, and all other properties are kept.

The following listing shows an example in which only the properties bldg:measuredHeight and bldg:lod2Solid shall be
exported for bldg:Building features (mode = keep). Note that this implies that all other thematic and spatial properties
of buildings are deleted. For bldg:WallSurface features, all properties shall be kept besides the generic measure
attribute area (mode = remove).

<query>
<propertyNames>
<context typeName="bldg:Building" mode="keep">
<propertyName>bldg:measuredHeight</propertyName>
<propertyName>bldg:lod2Solid</propertyName>
</context>
<context typeName="bldg:WallSurface" mode="remove">
<genericAttributeName type="measureAttribute">area</genericAttributeName>
</context>
</propertyNames>
</query>

The typeName of the target feature type must be given as xsd:QName. Like for the <typeNames> parameter, the XML
namespace declaration can be skipped if XML prefixes from Table 3.3 are used. Multiple <context> elements for the
same typeName are not allowed.

Each propertyName must reference a valid property of the given feature type. This includes properties that are defined
for the feature type or inherited from a parent type in the CityGML schemas, but also properties injected through an
ADE. The propertyName is given as xsd:QName. Mandatory properties like gml:id cannot be removed.

Generic attributes are also referenced by their name using a genericAttributeName element. The name is case sensitive
and thus must exactly match the name stored in the database. The optional type attribute can be used to more precisely
specify the target generic attribute. If type is omitted, then all generic attributes matching the name are kept or removed,
independent of their type. If you want to address all generic attributes of a given type but independent of their name,
then use a propertyName instead as illustrated below. In this example, all gen:stringAttributes are removed from
bldg:Building.

3.4. Exporting to CityGML 153

3D City Database for CityGML, Release 4.1

<query>
<propertyNames>
<context typeName="bldg:Building" mode="remove">
<propertyName>gen:stringAttribute</propertyName>
</context>
</propertyNames>
</query>

The typeName may also point to an abstract feature type such as bldg:_AbstractBuilding or core:_CityObject. The
property projection is then applied to all subtypes and can even be refined on the level of individual subtypes if the
value of the mode attribute is identical. If mode differs, then the context of the subtype overrides the context of the
(abstract) supertype.

The listing below shows how to remove gml:name and generic attributes of name location from all city objects by
defining a projection context for the abstract type core:_CityObject. The projection is refined for bldg:Building by
additionally removing bldg:measuredHeight.

<query>
<propertyNames>
<context typeName="core:_CityObject" mode="remove">
<propertyName>gnl : name</propertyName>
<genericAttributeName>location</genericAttributeName>
</context>
<context typeName="bldg:Building" mode="remove">
<propertyName>bldg:measuredHeight</propertyName>
</context>
</propertyNames>
</query>

If mode would be switched to keep on the bldg:Building context in the above example, then this would override the
core:_CityObject settings for buildings. Thus, buildings would only keep the bldg:measuredHeight property. The
core:_CityObject context would, however, still apply to all other city objects besides buildings.

3.4.2.3 <filter> selection clause

The <filter> parameter is used to identify a subset of city objects from the 3DCityDB whose property values satisfy
a set of logically connected predicates. If the property values of a city object satisfy all the predicates in a filter, then
that city object is part of the export.

Predicates can be expressed both on properties of the top-level feature types listed by the <typeNames> parameter and
on properties of their nested feature types. If the predicates are not satisfied, then the entire top-level feature is not
exported.

If the <typeNames> parameter lists more than one top-level feature type, then predicates may only be expressed on
properties common to all of them.

The <filter> parameter supports comparison operators, spatial operators and logical operators. The meaning of the
operators is identical to the operators defined in the OGC Filter Encoding (FE) 2.0 standard, but their encoding slightly
differs.

Most expressions are formed using a valueReference pointing to a property value and a literal value that is checked
against the property value.

154 Chapter 3. Importer-Exporter

http://docs.opengeospatial.org/is/09-026r2/09-026r2.html

3D City Database for CityGML, Release 4.1

Value references

A value reference is a string that represents a value that is to be evaluated by a predicate. The string can be the name
of a property of the feature type or an XML Path Language (XPath) expression that represents the property of a nested
feature type or a complex property.

Property names are given as xsd:QName. Examples for valid property names are core:creationDate,
bldg:measuredHeight, and tun:lod2MultiSurface.

In cases where a property of a nested feature type or complex property shall be evaluated, the value reference must be
encoded using XPath. The XPath expression is to be formulated based on the XML encoding of CityGML. Note that
the Importer/Exporter only supports a subset of the full XPath language:

* Only the abbreviated form of the child and attribute axis specifier is supported.

* The context node is the top-level feature type to be exported. In case two or more top-level feature types are
listed by the <typeNames> parameter, then the context node is their common parent type.

* Each step in the path may include an XPath predicate of the form “.=value” or “child=value”. Equality tests
can be logically combined using the “and” or “or” operators. Indexes are not supported as XPath predicate.

* The schema-element() function is supported. It takes the xsd: OQName of a feature type as parameter. The function
selects the given feature type and all its subtypes.

* The last step of the XPath must be a simple thematic attribute or a spatial property. Property elements that
contain a nested feature are not allowed as last step.

Assuming that bldg:Building is the top-level feature type to be exported, then the following examples are valid XPath
expressions:

* gen:stringAttribute/@gen:name selects the gen:name attribute of the generic string attributes of the
building

* gen:stringAttribute[@gen:name='area’]/gen:value selects the gen:value of a generic string
attribute of name “area”

* bldg:boundedBy/bldg:WallSurface/bldg:lod2MultiSurface selects the spatial LoD2 repre-
sentation of the wall surfaces of the building

* bldg:boundedBy/bldg:WallSurface[@gml:id='ID_01’ or gml:name="wall’]/

bldg:opening/bldg:Door/core:creationDate selects the core:creationDate of doors that are associated
with wall surfaces having a specific gml:id or gml:name

* bldg:boundedBy/schema-element (bldg:_BoundarySurface) /@gml: id selects the gml:id at-
tribute of all boundary surfaces of the building

* core:externalReference[core:informationSystem="http://somewhere.de']/
core:externalObject/core:name selects the core:name of the external object in an external
reference to a given information system

* gen:genericAttributeSet [@gen:name='energy’]/gen:measureAttribute/gen:value
selects the gen:value of all generic measure attributes contained in the generic attribute set named “energy”

Note: CityGML uses the eXtensible Address Language (xAL) to encode addresses of buildings, bridges and tunnels.
xAL is very flexible and allows an address to be encoded in different ways, which makes XPath expressions complex
to write. For this reason, the Importer/Exporter uses a simple ADE that can be used in XPath expressions to evaluate
address elements such as the street or city name. More information is provided in Section 3.4.2.9.

3.4. Exporting to CityGML 155

3D City Database for CityGML, Release 4.1

Literals and geometric values

Literals are explicitly stated values that are evaluated against a valueReference. The type of the literal value must
match the type of the referenced value.

If the literal value is a geometric value, the value must be encoded using one of the geometry types offered by the query
language. Support for additional geometry encodings like (E)WKT is planned for a future version. The following
geometry types are available:

* <envelope>

* <point>

* <lineString>

* <polygon>

» <multiPoint> (list of <point>s)

» <multiLineString> (list of <lineString>s)
* <multiPolygon> (list of <polygon>s)

An <envelope> is defined by its <lowerCorner> and <upperCorner> elements that carry the coordinate values. The
coordinates of a <point> are provided by a <pos> element, whereas <lineString> uses a <posList> element. A <poly-
gon> can have one <exterior> and zero or more <interior> rings. Rings are supposed to be closed meaning that the first
and the last coordinate tuple in the list must be identical. Interior rings must be defined in opposite direction compared
to the exterior ring.

The dimension of the points contained in a <posList> as well as in <exterior> and <interior> rings can be denoted
using the dimension attribute. Valid values are 2 (default) or 3.

Every geometry type offers an optional srid attribute to reference an SRID defined in the underlying database. If srid is
present, then the coordinate tuples are assumed to be given in the reference system associated with the corresponding
SRID, which is also used in coordinate transformations. If srid is not present, then the coordinate tuples are assumed
to be given in the SRID of the 3DCityDB instance.

A 2D bounding box:

<envelope>
<lowerCorner>30 10</lowerCorner>
<upperCorner>60 20</upperCorner>
</envelope>

A 2D point:

<point>
<pos>30 10</pos>
</point>

A 2D line string given in SRID 4326:

<lineString srid="4326">
<posList dimension="2">45.67 88.56 55.56 89.44</posList>
</lineString>

A 2D polygon with hole:

<polygon>
<exterior>35 10 45 45 15 40 10 20 35 10</exterior>

(continues on next page)

156 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

(continued from previous page)

<interior>20 30 35 35 30 20 20 30</interior>
</polygon>

Comparison operators

A comparison operator is used to form expressions that evaluate the mathematical comparison between two arguments.
The following binary comparisons are supported:

* <propertylsEqualTo> (=)

* <propertylsLessThan> (<)

* <propertylsGreaterThan> (>)
 <propertylsEqualTo> (=)

* <propertylsLessThanOrEqualTo> (<=)

» <propertylsGreaterThanOrEqualTo> (>=)
» <propertylsNotEqualTo> (<>)

The optional matchCase attribute can be used to specify how string comparisons should be performed. A value of true
means that string comparisons shall match case (default), false means caselessly.

The following example shows how to export all buildings from the 3DCityDB whose bldg:measuredHeight attribute
has a values less than 50.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<propertyIsLessThan>
<valueReference>bldg:measuredHeight</valueReference>
<literal>50</literal>
</propertyIsLessThan>
</filter>
</query>

Besides these default binary operators, the following additional comparison operators are supported:
* <propertylsLike>
* <propertylsNull>
» <propertylsBetween>

The <propertylsLike> operator expresses a string comparison with pattern matching. A combination of regular char-
acters, the wildCard character (default: *), the singleCharacter (default: .), and the escapeCharacter (default: \) define
the pattern. The wildCard character matches zero or more characters. The singleCharacter matches exactly one char-
acter. The escapeCharacter is used to escape the meaning of the wildCard, singleCharacter and escapeCharacter
itself. The matchCase attribute is also available for the <propertylsLike> operator.

The following example shows how to find all roads whose gml:name contains the string “main”.

<query>
<typeNames>
<typeName>tran:Road</typeName>

(continues on next page)

3.4. Exporting to CityGML 157

3D City Database for CityGML, Release 4.1

(continued from previous page)

</typeNames>
<filter>
<propertyIsLike wildCard="*" singleCharacter="." escapeCharacter="\" matchCase=
—~"false">
<valueReference>gml :name</valueReference>
<literal>xmain*</literal>
</propertyIsLike>
</filter>
</query>

The <propertyIsNull> operator tests the specified property to see if it exists for the feature type being evaluated.

The <propertylsBetween> operator is a compact way of expressing a range check. The lower and upper boundary
values are inclusive. The operator is used below to find all buildings having between 10 and 20 storeys.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<propertylIsBetween>
<valueReference>bldg:storeysAboveGround</valueReference>
<lowerBoundary>10</lowerBoundary>
<upperBoundary>20</upperBoundary>
</propertyIlsBetween>
</filter>
</query>

Spatial operators

A spatial operator determines whether its geometric arguments satisfy the stated spatial relationship. The following
operators are supported:

* <bbox>

e <equals>

* <disjoint>

* <touches>

e <within>

* <overlaps>

* <intersects>

* <contains>

o <dWithin>

* <beyond>
The semantics of the spatial operators are defined in OGC Filter Encoding 2.0, 7.8.3, and in ISO 19125-1:2004, 6.1.14.

The valueReference of the spatial operators must point to a geometric property of the feature type or its nested feature
types. If valueReference is omitted, then the gml:boundedBy property is used per default.

The listing below exemplifies how to use the <bbox> operator to find all city objects whose envelope stored in
gml:boundedBy is not disjoint with the given geometry.

158 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

<query>
<filter>
<bbox>
<operand>
<lowerCorner>30 10</lowerCorner>
<upperCorner>60 20</upperCorner>
</operand>
</bbox>
</filter>
</query>

The following example exports all buildings having a nested bldg:GroundSurface feature whose
bldg:lod2MultiSurface property intersects the given 2D polygon.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<intersects>
<valueReference>bldg:boundedBy/bldg:GroundSurface/bldg:lod2MultiSurface</
—valueReference>
<polygon>
<exterior>35 10 45 45 15 40 10 20 35 10</exterior>
</polygon>
</intersects>
</filter>
</query>

The last example demonstrates how to find all city furniture features whose envelope geometry is within the distance
of 80 meters from a given point location. The uom attribute denotes the unit of measure for the distance. If uom is
omitted, then the unit is taken from the definition of the associated reference system. If the reference system lacks a
unit definition, meter is used as default value.

<query>
<typeNames>
<typeName>frn:CityFurniture</typeName>
</typeNames>
<filter>
<dwithin>
<valueReference>gml :boundedBy</valueReference>
<point srid="4326">
<pos>45.67 88.56</pos>
</point>
<distance uom="m">80</distance>
</dWithin>
</filter>
</query>

Logical operators

A logical operator can be used to combine one or more conditional expressions. The logical operator <and> evaluates
to true if all the combined expressions evaluate to true. The operator <or> operator evaluates to true is any of the
combined expressions evaluate to true. The <not> operator reverses the logical value of an expression. Logical
operators can contain nested logical operators.

3.4. Exporting to CityGML 159

3D City Database for CityGML, Release 4.1

The following <and> filter combines a <propertylsLessThan> comparison and a spatial <dWithin> operator to find all
buildings with a bldg:measuredHeight less than 50 and within a distance of 80 meters from a given point location.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<and>
<propertyIsLessThan>
<valueReference>bldg:measuredHeight</valueReference>
<literal>50</literal>
</propertyIsLessThan>
<dWithin>
<valueReference>gnl :boundedBy</valueReference>
<point srid="4326">
<pos>45.67 88.56</pos>
</point>
<distance uom="m">80</distance>
</dWithin>
</and>
</filter>
</query>

gml:id filter operator

The <resourcelds> operator is a compact way of finding city objects whose gml:id value is contained in the provided
list of <id> elements.

The example below exports all buildings whose gml:id matches one of the values in the list.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<resourcelds>
<id>ID_01</id>
<id>ID_02</id>
<id>ID_03</id>
</resourcelds>
</filter>
</query>

SQL operator

The <sql> operator lets you add arbitrary SQL queries to your filter expression. It can be combined with all other
predicates.

The SQL query is provided in the <select> subelement. It must follow the same rules as discussed in chapter Section
3.4.1. Most importantly, the query shall return a list of id values that reference the ID column of the table CITYOB-
JECT.

Note that the query is encoded in XML. Thus, characters having special meaning in the XML language must be
encoded using entity references. For example, the less-than sign < and greater-than sign > must be encoded as &It; and

160 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

> respectively. Instead of using entity references, you can put your SQL string into a CDATA section. The string is
then parsed as purely character data.

For example, the following SQL filter expression selects all id values from city objects having a generic attribute called
energy_level whose double value is less than 10. The entity reference &It; must be used here.

<query>
<filter>
<sql>
<select>select cityobject_id from cityobject_genericattrib
where attrname='energy_level' and realval < 10</select>
</sql>
</filter>
</query>

When putting the same query into a CDATA section, the less-than sign must not be replaced with an entity reference.

<query>
<filter>
<sql>
<select>
<![CDATA[
select cityobject_id from cityobject_genericattrib
where attrname='energy_level' and realval < 10
17>
</select>
</sql>
</filter>
</query>

3.4.2.4 <count> parameter

The <count> parameter limits the number of explicitly requested top-level city objects in the export dataset.

The mandatory <upperLimit> element denotes the number of city objects to be exported. When combined with the
optional <lowerLimit> element, then the range of city objects from the lowerLimit position to the upperLimit position
in the result set are exported. Note that both lowerLimit and upperLimit are inclusive in this case.

The following query shows how to export at maximum 10 buildings from the database, even if more buildings satisfy
the query expression.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<count>
<upperLimit>10</upperLimit>
</count>
</query>

The following query would export at maximum 11 buildings (from the 10" to the 20" building in the result set). If the
result set contains less buildings, then the export dataset will, of course, also contain less buildings.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>

(continues on next page)

3.4. Exporting to CityGML 161

3D City Database for CityGML, Release 4.1

(continued from previous page)

<count>
<lowerLimit>10</lowerLimit>
<upperLimit>20</upperLimit>
</count>
</query>

3.4.2.5 <lods> parameter

The <lods> parameter lists the level of details (LoD) that shall be exported for the requested feature types.

The LoDs to be exported are given as list of one or more <lod> element having an integer value between 0 and 4. The
optional mode attribute specifies whether a feature must have a spatial representation in all of the enumerated LoDs to
be exported (mode = and), or whether it is enough that the feature has a spatial representation in at least one LoD from
the list (mode = or) (default). If a feature has additional spatial representations in LoDs that are not listed, then these
representations are not exported. If a feature does not satisfy the LoD filter condition at all, then it is skipped from the
export.

Many feature types in CityGML can have nested sub-features. In such cases, the top-level feature itself is not required
to have a spatial property, but the geometry can be modelled for its nested sub-features. For example, a bldg:Building
feature does not need to provide an LoD 2 geometry through its own bldg:lod2Solid or bldg:lod2MultiSurface prop-
erties. Instead, it can have a list of nested boundary surfaces such as bldg:WallSurface and bldg:RoofSurface features
that have own LoD 2 representations. Nevertheless, in this case the bldg:Building is considered to be represented in
LoD 2.

To handle these cases, the <lods> parameter offers the optional searchMode attribute. When set to all, then all nested
features are recursively scanned for having a spatial representation in the provided list of LoDs. If an LoD representa-
tion is found for any (transitive) sub-feature, then the top-level feature is considered to satisfy the filter condition. The
all mode is, however, expensive because it requires many joins and sub-queries on the database level. When setting
searchMode to depth instead, you can use the additional searchDepth attribute to specify the maximum depth to which
nested sub-features are searched for LoD representations.

For example, the following bldg:Building feature has a nested bldg:BuildingInstallation sub-feature and a nested
bldg:WallSurface sub-feature. Moreover, the bldg:Buildinglnstallation itself has a nested bldg:RoofSurface sub-
feature.

<bldg:Building>

<bldg:outerBuildingInstallation>
<bldg:BuildingInstallation>
<bldg:boundedBy>
<bldg:RoofSurface> ... </bldg:RoofSurface>
</bldg:boundedBy>
</bldg:BuildingInstallation>
</bldg:outerBuildingInstallation>

<bldg:boundedBy>
<bldg:WallSurface> ... </bldg:WallSurface>
</bldg:boundedBy>

</bldg:Building>

When setting searchDepth to 1 in this example, then not only the bldg:Building but also its nested
bldg:BuildingInstallation and bldg:WallSurface are searched for a matching LoD representation, but not the
bldg:RoofSurfaces of the bldg:BuildinglInstallation. This roof surface is on the nesting depth 2 when counted from the
bldg:Building. Thus, searchDepth would have to be set to 2 to also consider this bldg:RoofSurface feature.

162 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Per default, searchMode is set to depth with a searchDepth of 1.

The following listing exemplifies the use of the <lods> parameter. In this example, all tunnels shall be exported that
have either an LoD 2 or LoD 3 representation. LoD representations are also searched on sub-features up to a nesting
depth of 2.

<query>
<typeNames>
<typeName>tun:Tunnel</typeName>
</typeNames>
<lods mode="or" searchMode="depth" searchDepth="2">
<lod>2</lod>
<lod>3</lod>
</lods>
</query>

3.4.2.6 <appearance> parameter

The <appearance> parameter filters appearances by their theme. To keep an appearance in the target dataset, the value
of its app:theme attribute simply has to be enumerated using a <theme> subelement. The string values must exactly
match.

The app:theme attribute in CityGML is optional and thus can be null. To be able to also express whether appearances
having a null theme should be exported, the <appearance> parameter offers another subelement <nullTheme>, which
is of type Boolean. If set to true, appearances with a null theme are exported, otherwise not (default).

The following query exports road features and appearances with theme summer and winter. Since <nullTheme> is set
to false, appearances lacking an app:theme attribute are not exported.

<query>
<typeNames>
<typeName>tran:Road</typeName>
</typeNames>
<appearance>
<nullTheme>false</nullTheme>
<theme>summer</theme>
<theme>winter</theme>
</appearance>
</query>

3.4.2.7 <tiling> parameter

The <tiling> parameter allows for exporting the requested top-level features in tiles. Every tile is exported to its own
target file within a separate subfolder of the export directory.

Like the tiling settings of the simple GUI-based export filter (cf. chapter Section 3.4), the <tiling> parameter requires
three mandatory inputs: the <extent> of the geographic region that should be tiled and the number of <rows> and
<columns> into which the region should be evenly split. The <extent> must be provided as bounding box using a
<lowerCorner> and an <upperCorner> element.

The example below exports all buildings within the provided <extent> into 2x2 tiles.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>

(continues on next page)

3.4. Exporting to CityGML 163

3D City Database for CityGML, Release 4.1

(continued from previous page)

<tiling>
<extent srid="4326">
<lowerCorner>10.7005978 47.5707931</lowerCorner>
<upperCorner>10.7093525 47.5767573</upperCorner>
</extent>
<rows>2</rows>
<columns>2</columns>
</tiling>
</query>

Besides the mandatory input, the optional <cityGMLTilingOptions> element can be used to control the names of the
subfolders and tile files, and whether tile information should be stored as generic attribute. The following subelements
are supported:

¢ <tilePath> Name of subfolder that is created for each tile (default: tile).

o <tilePathSuffix> Suffix to append to each <tilePath>. Allowed values are row_column (default), xMin_yMin,
xMax_yMin, xMin_yMax, xMax_yMax and xMin_yMin_xMax_yMax.

» <tileNameSuffix> Suffix to append to each tile filename. Allowed values are none (default) and sameAsPath.
¢ <includeTileAsGenericAttribute> Add a generic attribute named TILE to each city object.

» <genericAttributeValue> Value for the generic attribute. Allowed values are identical to those for <tilePathSuf-
fix> (default: xMin_yMin_xMax_yMax).

If the <cityGMLTilingOptions> element is not present, then the settings defined for the Tiling options export preference
(cf. Section 3.6.2.2) are used instead.

3.4.2.8 targetSrid attribute

The <query> element offers an optional targetSrid attribute. If targetSrid is present, then all exported geometries will
be transformed into the target coordinate reference system. The targetSrid attribute must reference an SRID defined
in the underlying database. The transformation is performed using corresponding functions of the database system.

<query targetSrid="25832">

</query>

3.4.2.9 Address information

The 3DCityDB comes with a CityGML ADE that allows to easily use address information and metadata columns in
XML queries. The following table shows the XML namespaces to be used with CityGML version 2.0 respectively 1.0
and the recommended XML prefix of the 3DCityDB ADE.

164 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Table 3.4: XML prefix and namespace of the 3DCityDB ADE.

ADE XML prefix XML namespace

3DCityDB ADE citydb http://www.3dcitydb.org/
citygml-ade/3.0/citygml/2.0

http://www.3dcitydb.org/
citygml-ade/3.0/citygml/1.0

Address information. CityGML uses the OASIS xAL standard for the representation of address information. XAL is
very flexible in that it supports various address styles that can be XML-encoded in many ways. As a drawback, this
flexibility makes it difficult to define a filter on address elements (e.g., the street or the city) using an XPath expression
based on XxAL. When importing address information into the 3DCityDB, the xAL address fragment is parsed and
mapped onto the columns STREET, HOUSE_NUMBER, PO_BOX, ZIP_CODE, CITY, STATE and COUNTRY of
the ADDRESS table. Thus, it is preferable and simpler to express filter criteria on these columns.

For this reason, the 3DCityDB ADE injects additional properties into the core:Address feature of CityGML that
correspond to the columns of the ADDRESS table. By this means, these properties can be used in filter expressions.
The mapping between ADE properties and columns of the ADDRESS table is shown below. Note that the citydb
prefix must be associated with the ADE XML namespace (see above). If omitted, the CityGML 2.0 namespace is
assumed given that the prefix citydb is used.

3.4. Exporting to CityGML 165

http://www.3dcitydb.org/citygml-ade/3.0/citygml/2.0
http://www.3dcitydb.org/citygml-ade/3.0/citygml/2.0
http://www.3dcitydb.org/citygml-ade/3.0/citygml/1.0
http://www.3dcitydb.org/citygml-ade/3.0/citygml/1.0

3D City Database for CityGML, Release 4.1

Table 3.5: 3DCityDB ADE properties for accessing address information.

ADE property Data type Column of the ADDRESS table
(injected into core:Address)

citydb:street Xs:string STREET

citydb:houseNumber Xs:string HOUSE_NUMBER
citydb:poBox xs:string PO_BOX

citydb:zipCode xs:string ZIP_CODE

citydb:city Xs:string CITY

citydb:state Xs:string STATE

citydb:country Xs:string COUNTRY

The following example illustrates how to query all buildings along the street Unter den Linden. 1t uses the citydb:street
ADE property as value reference in the filter expression.

<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
<filter>
<propertyIsLike wildCard="x" singleCharacter="." escapeCharacter="\" matchCase=
—"true">
<valueReference>bldg:address/core:Address/citydb:street</valueReference>
<literal>Unter den Lindenx</literal>
</propertyIsLike>
</filter>
</query>

3.4.2.10 3DCityDB metadata

The 3DCityDB stores database-specific metadata with every city object wusing the columns
LAST_MODIFICATION_DATE, UPDATING_PERSON, REASON_FOR_UPDATE and LINEAGE of the CITY-
OBIJECT table. In order to make these metadata properties available in filter expressions, the 3DCityDB ADE injects

166 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

them into the CityGML core:_CityObject feature.

Table 3.6: 3DCityDB ADE properties for accessing database-specific
metadata information.

ADE property Data type Column of the CITYOBJECT
(injected into core:_CityObject) table
citydb:lastModificationDate xs:string LAST _MODIFICATION_DATE
citydb:updatingPerson Xs:string UPDATING_PERSON
citydb:reasonForUpdate Xs:string REASON_FOR_UPDATE
citydb:lineage Xs:string LINEAGE

The properties can also be used in filter expressions. For instance, the query below fetches all bridges that have been
modified in the database after 2018-01-01.

<query>
<typeNames>
<typeName>brid:Bridge</typeName>
</typeNames>
<filter>
<propertyIsGreaterThan>
<valueReference>citydb:lastModificationDate</valueReference>
<literal>2018-01-01</literal>
</propertyIlsGreaterThan>
</filter>
</query>

3.4.2.11 Using XML queries in batch processes

The Importer/Exporter offers a Command-Line Interface (CLI) which allows for embedding the tool in batch process-
ing workflows and third-party applications (cf. Section 3.8). XML queries can also be used in CityGML exports that
are triggered via this CLI interface. For this purpose, the XML query has to be copied into the config file that is used
for running the Importer/Exporter. This can be either the default config file (cf. Section 3.4) or a local file that is passed
to the CLI using the -config command-line parameter.

Each config file must use a <project> root element associated with the XML namespace http://www.3dcitydb.org/
importer-exporter/config. Export settings are then provided in the <export> subelement. The <query> element of an
XML query expression can simply be copied as child element of the <export> element. In addition, the useSimple-
Query attribute on the <export> element has to be set to false.

The listing below shows an excerpt of a config file using an XML export query.

3.4. Exporting to CityGML 167

http://www.3dcitydb.org/importer-exporter/config
http://www.3dcitydb.org/importer-exporter/config

3D City Database for CityGML, Release 4.1

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<project xmlns="http://www.3dcitydb.org/importer-exporter/config">
<database>
. database connection details go here ...
</database>
<export useSimpleQuery="false">
. copy your query here ...
<query>
<typeNames>
<typeName>bldg:Building</typeName>
</typeNames>
</query>
. provide more export settings here ...
</export>
</project>

3.5 Exporting to KML/COLLADA/gITF

3D City Database contents can be directly exported in KML [Wils2008], COLLADA [BaFi2008], and gITF
[Khro2018] formats for presentation, viewing, and visual inspection in a broad range of applications such as Earth
browsers like Google Earth, ArcGIS Explorer, and Cesium etc.

Note: KML/COLLADA/gITF formatted exports come straight from the 3D City Database. No direct file
transformation CityGML KML/COLLADA/gITF is supported yet. If a CityGML file shall be converted to
KML/COLLADA/gITF, the CityGML content must be imported into the database first and then exported into the
KML/COLLADA/gITF format.

The KML/COLLADA/GITF Export tab shown in Fig. 3.17 collects all parameters required for the export in a similar
fashion as for a CityGML export (see the previous chapter). In addition, more fine-grained preference settings affecting
the KML/COLLADA/gITF export are available on the Preferences tab of the operations window. Make sure to check
these settings before starting the export process. A full documentation of the export preferences is available in Section
3.6.3. The following table provides a brief summary overview.

168 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Table 3.7: Summary overview of the KML/COLLADA/gITF export pref-

erences
Preference name Description
General Preference Some common settings of the exported files
Rendering Preferences Defines the look of the KML/COLLADA/gITF exports
when visualized in the
virtual globes (e.g. Cesium, Google Earth, NASA
World Wind, ESRI ArcGlobe).
Each of the top-level feature categories has its own
Rendering settings here
Information Balloon KML offers the possibility of enriching its placemark
Preferences elements with
information bubbles, so-called balloons. They can be
specified here
Altitude/Terrain Controls the way through which the exported datasets
Preferences to be
perfectly displayed in the Earth browser

Output file selection. Type the filename directly into the text field or activate the file dialog provided by the operating
system after pushing the Browse button [1].

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the name of the workspace
and the timestamp from which the data shall be exported can be specified [2]. If no workspace is provided, the default
workspace is assumed (Oracle: LIVE).

Export contents. These KML/COLLADA/gITF Exporter allows for specifying/selecting the objects of interest for
the export. These can be single objects or whole areas delimited by a bounding box. Two radio buttons [3] at the left
side of the export dialog let you choose between those two options.

* Single object: Enter the GML IDs of the object(s) of interest. Multiple IDs have to be separated by commas.

* Bounding Box: Enter the coordinates of a bounding box defining the area of interest. Objects are exported
if their centroids lie within the specified bounding box. The reference system used for defining the bounding
box can be the same as the one used in the database or any other one supported by Oracle and PostGIS. It is
also possible to add further user-defined reference systems (see the previous chapter). New reference systems
can be added to the Import/Export tool (preferences tab, node Database, subnode Reference systems) if they
are supported by the used database server. The target system with the same dimensionality (WGS84 for 2D,
WGS84 3D for 3D) will be applied for the coordinate transformation during the KML/COLLADA/gITF Export.

Tiling only applies to exports of areas defined by a bounding box. Tiled exports are used in order to load and unload
parts of the exported model depending on their current visibility when viewed, for example, in Google Earth. Since
the Earth Browser’s responsiveness decreases greatly with single files larger than 10 Mb, tiled exports (with tile file

3.5. Exporting to KML/COLLADA/gITF 169

3D City Database for CityGML, Release 4.1

[ED) City Database Importer/Exporter
File Project View Help

Import Export KML/COLLADA/QITF Export Database Preferences

| !! Browse I

- EXport con
(O single object
gml:id

(® Bounding Box

-~ Versioning
Workspace Timestamp (DD.MM.YYY) g I

Appearance/Theme none

Feature Types

= [S
+

Bridge
Building
CityFurniture
CityOhjectGroup
Generics
LandUse
Relief
Transportation
" [] Tunnel
Vegetation

' [/] WaterBody

e [P Reference system Same as in database ~
Xmin X max
Yrnin ¥ max
Tiing (@ Notling (O Automatic () Manual Rows Columns
- Export from level of detail Display as
|:| Footprint visible from pixels
LoD2 v [] Extruded visible from pixels
[Geometry visible from pixels
COLLADA/gITF visible from 0| pixels

Fetch themes from DB

Export

Ready

Database disconnected

Fig. 3.17: The KML/COLLADA/gITF Export tab allowing for exporting KML/COLLADA/gITF models from the

3DCityDB

170

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

sizes usually a lot smaller than that) are highly recommended. As mentioned above, only objects whose centroids lie
within the tile’s bounding box will be exported.

There are three tiling modes [4] available for a KML/COLLADA/gITF export:

* no tiling: as the name implies, no tiling takes place. Just a single tile holding all the exported objects is exported.

This is only advisable when the resulting file is at most 10 MB in size.

automatic: the area enclosed by the bounding box will be exported in tiles having roughly the side length set on
the preferences tab under the node KML/COLLADA/gITF Export, subnode Rendering (default value is 125m.).
The amount of exported rows and columns will be calculated by dividing the length and width (in unit of meters)
of the delimiting bounding box by the preferred tile side length and rounding up the result. For example: if the
user wants to export a 1000m x 1100m bounding box with a preferred tile side length of 300m, 4x4 tiles will be
generated since 1000/300 = 3.333 and 1100/300 = 3.666. This also implies: in case of automatic tiling it cannot
be guaranteed that tiles will be perfectly square, but they will tend to.

manual: the number of rows and columns can be freely set by the user. The area will be divided in equally
spaced portions horizontally and vertically in WGS84 and the resulting tile sizes and forms will adapt to the
values specified.

The exported tiles are organized with a hierarchical directory structure which means that each individual tile file is
named by its column number and all the tile files that belongs to the same row are stored in a separate subfolder
named by their corresponding row number. The numbering of both rows and columns should start with 0. All those
subfolders are in turn stored in a folder named “Tiles”. This hierarchical directory structure (cf. Fig. 3.18) ensures that
the exported tile files are distributed over different subfolders in order to avoid putting all tile files into a single folder
which may result in significant performance issues at least under MS Windows operating systems.

Latitude

7

J
z

]
E
?

:

0,2) | (1,2)

?

Q

LLADA

©, 1) | (1,1) ?ll—e;__’ T_

(0,0) | (1,0)

|
s

:

Longitude

i

:

Fig. 3.18: Example: hierarchical directory structure for export of 2x3 tiles

Export from level of detail. The Level of Detail as defined by the CityGML specification should be used as basis
information for the KML/COLLADA/gITF export. For the same city object higher levels of detail usually contain

3.5. Exporting to KML/COLLADA/gITF 171

3D City Database for CityGML, Release 4.1

many more geometries and these geometries are more complex than in lower levels. For instance, a building made of
40 polygons in LoD2 may consist of 3000 polygons in LoD3. This means LoD3 based exports are a lot more detailed
than LoD2 based exports, but they also take longer to generate, are bigger in size and therefore load more slowly in
the Earth browser.

By using the drop-down list [5] a single constant LoD can be used as basis for all exports or it can be left to the
Importer/Exporter to automatically determine which the highest LoD available for each cityobject is and then use it as
the basis for the KML/COLLADA/gITF exports.

Display as. These fields in the export dialog [6] determines what will be shown when visualizing the exported dataset
in earth browsers.

* Footprint: objects are represented by their ground surface projected onto the earth surface. This is a pure KML
export.

» Extruded: objects are represented as blocks models by extruding their footprint to their height (calculated by
using their 3D envelopes). This is a pure KML export.

* Geometry: objects are represented with fully detailed geometry information with respect to the selected Level
of Detail. It can explicitly show the different thematic surfaces (e.g. wall and roof surfaces) by means of coloring
them (textures are not supported by KML) according to the settings in the preferences tab (KML/COLLADA/gITF
Export node, Rendering subnode). If not explicitly modeled, thematic surfaces will be inferred for LoD1
or LoD2 based exports following a trivial logic (surfaces touching the ground — that is, having a lowest z-
coordinate- will be considered wall surfaces, all other will be considered roof surfaces), in LoD3 or LoD4 based
exports surfaces not thematically modeled will be colored as wall surfaces.

¢ COLLADA/gITF: shows the detailed geometry in COLLADA and gITF formats including support for textures.
The Appearance/Theme combo box below allows choosing from all possible appearance themes (as defined in
the CityGML specification [GKNH2012]) available in the currently connected 3DCityDB instance. The list is
workspace- and timestamp sensitive and will be filled on demand when clicking on the fefch button. Default
value is none, which renders no textures at all and colors all surfaces according to the settings in the preference
tab (KML/COLLADA/QITF Export node, Rendering subnode).

Note: For Oracle, the Footprint and Extruded display forms internally use the spatial function SDO_AGGR_UNION.
This function is not allowed to be used under Oracle 10g/11g with the Locator license option even if it happens to be
available. The Importer/Exporter does not check the Oracle license option. Thus, it is up to the user to observe the
Oracle license and not to use the Footprint and Extruded display forms under Oracle 10g/11g Locator. This restriction
does not hold for the Oracle Spatial license option. Likewise, starting from Oracle 12¢, SDO_AGGR_UNION is also
available for Locator.

Depending on the chosen level of detail, some display form checkboxes will become enabled or disabled, depending
on whether the level of detail offers enough information for this display form or not. For instance, Footprint can be
exported from any CityGML LoD (0 to 4), whereas Extruded, Geometry, and COLLADA/gITF exports are possible
from LoD1 upwards. Exports will have their filename enhanced with a suffix specifying the selected display form.
This applies for both tiled and untiled exports.

With the visibility field next to each display form the user can control the KML element <minLodPixels>, see
[Wils2008]: measurement in screen pixels that represents the minimum limit of the visibility range for a given <Re-
gion>. A <Region> is in the generated tiled exports equivalent to a tile. The <maxLodPixels> value is identical
to the <minLodPixels> of the next visible display form, so that display forms are seamlessly switched when the
viewer zooms in or out. The last visible display form has a <maxLodPixels> value of -1, that is, visible to infinite
size. Visibility ranges can start at a value of 0 (they do not have to, though). Please note that the region size in pixels
depends on the chosen tile size. Thus, if the tile size is reduced also the visibility ranges should be reduced. Increases
in steps of a third of the tile side length are recommended. An example of a good combination for a tile size of about
250m x 250m could be: Footprint, visible from 50 pixels, Geometry, visible from 125 pixels, COLLADA/gITF, visible
from 200 pixels. Some display forms, like Extruded in this example, can be skipped. The visibility field only becomes

172 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Fig. 3.19: Example: The same building displayed as (top down and left to right) footprint, extruded, geometry, COL-
LADA

3.5. Exporting to KML/COLLADA/gITF 173

3D City Database for CityGML, Release 4.1

enabled for bounding box exports; single building exports are always visible.

Feature Types. Similar to CityGML imports and exports it is also possible to select what top-level feature types shall
be displayed in a KML/COLLADA/gITF export. With the selection tree panel [7] it is possible to pick each category
individually and also leave single categories out, i.e.: export CityFurniture and WaterBody only, or export everything
but Building and so on. Between LoD1 and LoD4 all feature types are available. For LoDO only those top-level
feature types offering LoDO geometry in the CityGML 2.0 schema (Building, Waterbody, LandUse, Transportation
and GenericCityObject) are selectable, whereas the rest of the feature class checkboxes will become automatically
disabled.

Note: Support for Relief features in KML/COLLADA/gITF exports is currently limited to the type TIN_RELIEF.
Other Relief types such as MASSPOINT_RELIEF, BREAKLINE_RELIEF, and RASTER_RELIEF are not supported
currently. Also, due to the usually wide-streched area of Relief features and the non-clipping nature of the Bounding-
Box filter it is recommended to export Relief features in a single step making use of the no tiling option and using
an extensive enough BoundingBox. As an alternative, the digital terrain model data can be divided in smaller Relief-
Components tailored to match the tiling settings of the desired export (their area contained in or equal to the resulting
tiles). This requires altering the original data nevertheless and, as such, it must be done before the CityGML contents
are imported into the database at all.

Google earth
C

Fig. 3.20: Example for exported CityGML top-level features (building, bridge, tunnel, water, vegetation, transportation
etc.) displayed as KML/COLLADA

KML/COLLADA/gITF export. Having completed all settings, the KML/COLLADA/gITF data export is triggered
with the Export button at the bottom of the dialog (cf. Fig. 3.17). If a database connection has not been established
manually beforehand, the currently selected entry on the Database tab is used to connect to the 3D City Database.
Progress information is displayed within a separate status window. This status window also offers a Cancel button that
lets a user abort the export process. The separate steps of the export process as well as possible error messages are
reported to the console window.

After having completed the export, multiple files along with the 7iles folder will be written to the prespecified output
location. One of them is called master KML file which contains a list of <NetworkLink> elements pointing to
every exported tile files stored in the Ziles folder. This KML file can therefore be directly opened in Google Earth for
viewing and exploring the exported KML/COLLADA models. In addition, for each selected display form (Footprint,
Extruded, Geometry, and COLLADA/gITF), a JSON formatted file called Master JSON file is created and its contents

174 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

should look like the following example:

Master JSON file example:

{

"version": "1.0.0",
"layername": "NYC_Buildings",
"fileextension": ".kmz",
"displayform": "extruded",
"minLodPixels": 140,
"maxLodPixels": -1,

"colnum": 29,
"rownum": 23,

"bbox": {
"xmin": -74.0209007,
"xmax": -73.9707756,

"ymin": 40.6996416,
"ymax": 40.7295678

}

As the name of each JSON parameter implies, this JSON file contains the relevant information about the specified
export settings and can hence be seen as a kind of metadata allowing applications to interpret the contents of the
exported datasets. For example, the length and width (in WGS84) of each tile can be determined using the following
formulas:

TileWidth = (bbox.xmax” bbox.xmin)/colnum
TileLength = (bbox.ymaz~bbox.ymin)/rownum

With these two calculated values, applications are also able to use the following formulas to rapidly retrieve the row
and column number of the tile in which a given point lies:

ColumnNumber = floor((X “bbox.xmin)/TileWidth)
RowNumber = floor((Y “bbox.ymin)/TileLength)
where X and Y denote the WGS84 coordinates of the given point.

Further, if a bounding box is given, which is formed by a lower-left corner and an upper-right corner and their row
and column numbers are expressed as (RI, C1) and (R2, C2) respectively, all those tiles that intersect with the given
bounding box can be found iteratively, as their row and column numbers must fulfil the following conditions:

R1 < RowNumber < R2 C1 < columnNumber < C2.

3.5.1 Support of GenericCityObject having any geometry types

The earlier versions of KML/COLLADA/gITF Exporter have been designed to only support exports of surface-based
geometries for all CityGML classes. Starting from version 3.0.0 of the 3DCityDB, the KML/COLLADA/gITF Ex-
porter has been functionally enhanced with the support for exporting point and curve geometry types of GenricCi-
tyObject objects in KML/KMZ format. GenricCityObject is a feature class defined within the CityGML’s Generics
module (see Section 2.6.4.5) that allows for modeling and exchanging of 3D city objects which are not covered by any
other thematic modules of CityGML. The geometry of a GenericCityObject can be explicitly defined in LODO0-4 using
arbitrary 3D GML geometry object (class gml:_Geometry). Thus, any complex structured objects that have point, line,
surface, or solid geometries can be geometrically represented by means of GenricCityObject objects for every LOD.
For example, the indoor routing network model, which are not defined in the current CityGML specification, could
be even though modeled using the CityGML’s Generics module where each GenricCityObject object may represent a
node or an edge of the network model.

3.5. Exporting to KML/COLLADA/gITF 175

3D City Database for CityGML, Release 4.1

GMLID: 8344

Existing generic attributes (mouseOver for values):
Area, DIN277_, DIN277Untergruppe_, Flooring_, LAYER_ID, Level,

Original_RoomNumber_, Room_no, SPACE_STATE_ID, STATE_NAME,
TUMWebLink

Fig. 3.21: Visualization of the network model of the building interior of Technical University Munich (TUM)

Depending on the chosen Level of Detail, the point and curve geometries of GenericCityObject objects are exported,
along with their surface and solid geometries, into the output KML/KMZ file whose filename is enhanced with a suffix
denoting the selected display form (e.g. Footprint, Extruded, Geometry, or COLLADA/QITF).

3.5.2 Loading exported models in Google Earth and Cesium Virtual Globe

In order to make full use of the features and functionalities provided by Google Earth, it is highly recommended to
use the enhanced version of Google Earth — Google Earth Pro which is available free of charge starting from January
2015. Some of the features described in this documentation, like highlighting, can also flawlessly work in the normal
Google Earth with version 6.0.1 or higher.

Displaying a file in Google Earth can be achieved by opening it through the menu (“File”, “Open’) or double-clicking
on any kml or kmz file if these extensions are associated with the program (default option at Google Earth’s installation
time).

Loaded files can be refreshed when generated again after loading (if for example the balloon template file was changed)
by choosing the “Revert” option in the context menu on the sidebar. There is no need to delete and load them again or
shutdown or restart the Earth browser.

For best performance, cache options (“Tools”, “Options”, “Cache”) should be set to their maximum values, 1024
MB for memory cache size, 2000 MB for disk cache. Actual maximums may be lower depending on the computer’s
hardware.

Google Earth enables showing the terrain layer by default for realistic display of 3D models. Disabling of terrain
layer is only possible in Google Earth Pro. You may need to disable the terrain layer in case that the exported models
cannot be seen although shown as loaded in Google Earth’s sidebar, since they are probably buried into the ground
(see Section 3.6.3.4).

When exporting balloons into individual files (one for each object) written together into a balloon directory access
to local files and personal data must be allowed (“Tools”, “Options”, “General’’). Google Earth will issue a security

176 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

warning that must be accepted, otherwise the contents of the balloons (when in individual files and not as a part of the

doc.kml file) will not be displayed.

It is also possible to upload the generated KML/COLLADA/gITF files to a web server and access them from there
via internet browser with Cesium Virtual Globe (starting from December 2015, the Google Earth Plugin is no longer
supported by most modern web browsers due to security considerations). In this case, the Cross Origin Resource
Sharing (CORS) shall be enabled on the web server to allow cross-domain AJAX requests sent from the based-web

frontend.

Note: Starting with version 7 (and at least up to version 7.1.1.1888) Google Earth has changed the way transparent or
semi-transparent surfaces are rendered. This is especially relevant for visualizations containing highlighting surfaces
(explained in Section 3.6.3.2). When viewing KML/COLLADA models in Google Earth it is strongly recommended to
use Google Earth (Pro) version 7 or higher and switch to the OpenGL graphic mode for an optimal viewing experience.
Changing the Graphic Mode can be achieved by clicking on Tools, Options entry, 3D View Tab.

& Google Earth Options

7 - |

30 View | Cache | Touring | Mavigation General

Texture Colars Anisotrapic Filtering

(71 High Color (15 bit) = Off
@ True Color (32 bit) @ Medium
Compress i) High

Show LatfLong
") Dedmal Degrees

Units of Measurement
@ Systemn default
(") Feet, Miles

(71 Meters, Kilometers

@ Degrees, Minutes, Seconds
) Degrees, Decimal Minutes
) Universal Transverse Mercatar

Terrain

Elevation Exaggeration (also scales 3D buildings and trees):

[] use 3D Imagery (disable to use legacy 30 buildings)

Owerview Map

1

[7] use high quality terrain (dizable for quicker resolution and faster rendering)

Labels/Tcon Size

Graphics Mode

7 Small @ OpenGL
@ Medium () Direct
D) Large [7] use zafe mode
Fonts
Choose 3D Font
(0.01-3)

Map Size; Small D Large
Zoom Relation: infinity 1:1 D Linfinity
o) (o) Lo]

Fig. 3.22: Setting the Graphics Mode in Google Earth

3.5. Exporting to KML/COLLADA/gITF

177

3D City Database for CityGML, Release 4.1

wik 10 "‘-J!‘.' 2artn
)

Fig. 3.23: KML/COLLADA models rendered with DirectX, highlighting surface borders are noticeable everywhere

178 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

- -ul.'bt"‘-{!li' 2artn
{

Fig. 3.24: The same scene rendered in OpenGL mode

3.5. Exporting to KML/COLLADA/gITF 179

3D City Database for CityGML, Release 4.1

3.6 Preferences

In addition to the settings on the Import, Export, KML/COLLADA/gITF Export and Database tabs of the operations
window, more preferences affecting the separate operations of the Importer/Exporter are available on the Preferences
tab shown below.

3D City Database Importer/Exporter — O x
File Project View Help
Import Export KML/COLLADA/QITF Export Database Preferences
= CityGML Import Continuation
gmi:id handiing Continuation information
Bounding box Data |
ata lineage
Address neag
Appearance Reason for update
Gaomatry
Indexes
Updating person
XML validation s
XSL transformation (®) Use database user name
Import log (O Spedfy updating person
Resources
+-CityGML Export
+-KML fCOLLADA fgITF Export
+ Database Method for creationDate allocation
#-General () Inherit missing creationDate from parent object (or set to current date instead)
(") Setmissing creationDate values to current date
(@ Replace al creationDates with the current date
Method for terminationDate allecation
(") Inherit missing terminationDate from parent object (or set to null instead)
(") Setmissing terminationDate values to null
(@ Setall terminationDate values to rull
Restore Default Apply o
Ready Database disconnected

Fig. 3.25: The preferences dialog

The preferences are structured in a tree view [1] on the left side of the dialog with the following main nodes:

3.6.1 CityGML import preferences
3.6.1.1 Continuation

The Continuation preferences allow for specifying metadata that is assigned to every city object at import time. The
metadata is carried to columns of the table CITYOBJECT and is therefore accessible in SQL queries.

The following metadata can be set:

180 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

30 City Database Importer/Exporter - O *
File Project View Help

Import Export KML/COLLADA/gITF Export Datsbase Preferences

3--Ci_t'ngML Import Continuation
~gml:id handling Continuation information
«Bounding box r
Data neage
~Address g
-~ Appearance Reason for update
~Geometry
~Indexes =
XML walbdation Updating p
-XSL transformation (® Use datsbase user name
r-Impart lag () Specify updating person
L-Resources

&I CityGML Export
#1-KMLCOLLADA,alTF Export
(+]-Database Method for creationDate allocation

- General (") Inherit missing creationDate from parent object (or set to current date
() Set missing creationDate values to aurrent date

- M -

@ Replace all creationDates with the current date

Method for terminationDate allocaton
(") Inherit missing terminationDate from parent abject (or set to nullinste
() Set missing terminationDate values to null

®

(@ Set all terminationDate values to nul

Restore | | Default | _ Apply |

Ready | |patabase disconnected

Fig. 3.26: CityGML import preferences — Continuation.

3.6. Preferences 181

3D City Database for CityGML, Release 4.1

Table 3.8: Metadata stored with every city object in the table CITYOB-

JECT.

ADE Metadata Description

Data lineage [1] A string value denoting the origin of the data.
(column: LINEAGE; default value: NULL)

Reason for update [1] A string value providing the reason for a data update.
(column: REASON_FOR_UPDATE; default value:
NULL)

Updating person [2] A string value identifying the person being responsible
for importing
or updating the city object.
(column: UPDATING_PERSON; default value: name
of the database user)

creationDate [3] A timestamp value denoting the date of creation of the
city object.
If this date is not available from the CityGML feature
during import,
it may either be set to the import date or be inherited
from the parent
feature (if available). Alternatively, the user can choose
to replace
all creation dates from the input files with the import
date.
(column: CREATION_DATE; default value: import
date)

terminationDate [4] A timestamp value denoting the date of termination of
the city object.
If this date is not available from the CityGML feature
during import,
it may either be set to NULL or be inherited from the
parent feature
(if available). Alternatively, the user can choose to
replace all termination
dates in the input files with NULL.
(column: TERMINATION_DATE; default value:
NULL)

182 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Note: Both creationDate and terminationDate are CityGML properties of city objects and therefore are exported
to CityGML datasets. The remaining metadata information does not map to CityGML properties. It is therefore not
exported to CityGML datasets but is only available in the database.

3.6.1.2 gml:id handling

Globally unique object identifiers are crucial for ensuring data consistency and for enabling data management work-
flows. Especially when it comes to (subsequently) updating the city model content in the database, unique identifiers
will help to quickly identify and replace objects in the database with candidates from external datasets. Unfortunately,
gml:id values do not meet the requirement of global uniqueness since they are, per definition, optional and only unique
within the scope of a single dataset.

i 3D City Database Importer/Exporter — ([X

File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

[=]- CityGML Import gml:id handling
-Continuation
Joml:id handling Method for gml:id assighment
“Address gml:id prefix |UUID_
- Appearance
--Geometry @ Only use UUIDs in case of missing gml:id
~-Indexes
Repl Il gml:ids by UUID
- XML validation @ ezl gkt s
- XSL transformation Store original gml:ids as external reference
--Import log
~~Resources Codespace for gml:ids
E CityGML Export (® Do not store a codespace
[+- KML/COLLADA/gITF Export
[+)-Database (O Use file name of CityGML file
+/-General (O Use path and file name of CityGML file
(O User-defined codespace
UuID
Restore Default Apply
Ready Database disconnected

Fig. 3.27: CityGML import preferences — gml:id handling.

3.6. Preferences 183

3D City Database for CityGML, Release 4.1

Per default, the Importer/Exporter assumes that the gml:id values associated with the city objects to be imported are
globally unique and therefore imports them “as is” into the database. Only in case a city object (or geometry object)
lacks a gml:id, a UUID value will be generated at import time and stored with the object.

This default behavior can be overridden with this preferences dialog in order to let the Importer/Exporter replace all
gml:id values in the input file(s) with generated UUID values. The user may choose a prefix for the gml:id value.
Use this option with caution. The original gml:id value may optionally be stored as external reference to not lose this
information.

In addition to the gml:id, the 3DCityDB allows for storing a second GMLID_CODESPACE metadata value. The idea
is that the compound value of gml:id and GMLID_CODESPACE is globally unique. The user can choose to use the
file name of the CityGML import file, its complete path or a user-defined string as GMLID_CODESPACE. Per default,
the Importer/Exporter does not import a GMLID_CODESPACE value though.

Note: The Importer/Exporter internally only relies on the gml:id value to identify objects, for example, when resolv-
ing XLink references. The GMLID_CODESPACE value therefore supports user-defined data management processes
in the first place.

3.6.1.3 Address

CityGML relies upon the OASIS Extensible Address Language (xAL) standard for the representation and exchange of
address information. XAL provides a flexible and generic framework for encoding address data according to arbitrary
address schemes. The columns of the ADDRESS table of the 3D City Database however only map the most common
fields in address records (cf. Section 2.7). Moreover, the Importer/Exporter currently does not support arbitrary xAL
fragments but is tailored to the parsing of following two XAL templates that are taken from the CityGML specification.

<bldg:Building>

<bldg:address>
<Address>
<xalAddress>
<!-- Bussardweg 7, 76356 Weingarten, Germany -—->
<xAL:AddressDetails>
<xAL:Country>
<xAL:CountryName>Germany</xAL:CountryName>
<xAL:Locality Type="City">
<xAL:LocalityName>Weingarten</xAL:LocalityName>
<xAL:Thoroughfare Type="Street">
<xAL:ThoroughfareNumber>7</xAL: ThoroughfareNumber>
<xAL:ThoroughfareName>Bussardweg</xAL: ThoroughfareName>
</xAL:Thoroughfare>
<xAL:PostalCode>
<xAL:PostalCodeNumber>76356</xAL:PostalCodeNumber>
</xAL:PostalCode>
</xAL:Locality>
</xAL:Country>
</xAL:AddressDetails>
</xalAddress>
</Address>
</bldg:address>
</bldg:Building>
<bldg:Building>

<bldg:address>
<Address>

(continues on next page)

184 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

(continued from previous page)

<xalAddress>
<!-- 46 Brynmaer Road Battersea LONDON, SW11l 4EW United Kingdom ——>
<xAL:AddressDetails>
<xAL:Country>
<xAL:CountryName>United Kingdom</xAL:CountryName>
<xAL:Locality Type="City">
<xAL:LocalityName>LONDON</xAL:LocalityName>
<xAL:DependentLocality Type="District">
<xAL:DependentLocalityName>Battersea</xAL:DependentLocalityName>
<xAL:Thoroughfare>
<xAL:ThoroughfareNumber>46</xAL: ThoroughfareNumber>
<xAL:ThoroughfareName>Brynmaer Road</xAL:ThoroughfareName>
</xAL:Thoroughfare>
</x%AL:DependentLocality>
<xAL:PostalCode>
<xAL:PostalCodeNumber>SWll 4EW</xAL:PostalCodeNumber>
</xAL:PostalCode>
</xAL:Locality>
</xAL:Country>
</xAL:AddressDetails>
</xalAddress>
</Address>
</bldg:address>
</bldg:Building>

If xAL address information in a CityGML instance document does not comply with one of the templates (e.g., because
of additional or completely different entries), the address information will only partially be stored in the database (if
at all). In order to not lose any original address information, the entire <xal:AddressDetail> XML fragment can be
imported “as is” from the input CityGML file and stored in the XAL_SOURCE column of the ADDRESS table in the
3D City Database.

For this purpose, simply check the Import original <xal:AddressDetail> XML option (this is the default value). Note
that the import of the XML fragment does not affect the filling of the remaining columns of the ADDRESS table
(STREET, HOUSE_NUMBER, etc.) from the xAL address information.

The symmetrical setting for CityGML exports (i.e., recovering the xAL fragment from XAL_SOURCE) is explained
in Section 3.6.2.4.

3.6.1.4 Appearance

The Appearance preference settings define how appearance information (i.e., materials and textures associated with
the observable surfaces of a city object) is processed at import time.

Per default, all appearance information as well as all related texture image files are loaded into the 3D City Database
[1]. The Importer/Exporter will work on both image files located in a relative path to the CityGML dataset and image
files referenced by a valid URL. The latter might require network access. Alternatively, a user may choose to only
consider the appearance information but to not load the texture image files. As a third option, appearance information
can be completely skipped during import [1].

Prior to version 1.0 of the CityGML standard, material and texture information of surface objects was modelled using
the TexturedSurface concept. This concept was however replaced by the Appearance module in CityGML 1.0 and
therefore is marked deprecated. Although the CityGML specification disadvises the use of the TexturedSurface con-
cept, it is still allowed even in CityGML 2.0 datasets. The Importer/Exporter can parse and interpret TexturedSurface
information but will automatically convert this information losslessly into the Appearance module. Since TextureSur-
face information is not organized into themes but a theme is mandatory in the context of the Appearance module, the
user has to define a theme that shall be used in the conversion process [2]. The default value is rgbTexture.

3.6. Preferences 185

3D City Database for CityGML, Release 4.1

W 3D City Database Importer/Exporter — O X

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

[=)-CityGML Import Address
- Continuation

~~gml:id handling ¥AL address information
~Bounding bax

m Import original <xal:AddressDetails = XML fragment
- Appearance
~-Geomelfry

~Indexes

XML validation

- ¥5L transformation
~Impart log

~Resources

H-CityGML Export

- ¥ML fJCOLLADAfgITF Export
- Database

|- General

|y T oy Oy O e |

Restore Default Apply

Ready Database disconnected

Fig. 3.28: CityGML import preferences — Address.

186 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

¥ 3D City Database Importer/Exporter - O *
File Project View Help

Import Export KML/COLLADA/GITF Export Database Preferences

=-CityGML Import Appearance
~Continuation
""9""'|=i$\:ﬂhﬁ Import of appearances
t-Bounding box
- Address (®) Import appearances, import texture files
®A\ppearance | () Import appearances, do not import texture files
~Geometry (C) Do notimport appearances
~Indexes
XML validation

..X5L transformation Conversion from TexturedSurface (deprecated) to Appear,
+Import log Store in theme rghTexture

- CityGML Export
[-KML/COLLADA/gITF Expart

[+-Database
[+-General
Restore Default | | Apply
Ready | Database disconnected

Fig. 3.29: CityGML import preferences — Appearance.

3.6. Preferences 187

3D City Database for CityGML, Release 4.1

3.6.1.5 Geometry

Before importing the city objects into the 3D City Database, the Importer/Exporter can apply an affine coordinate

transformation to all geometry objects. Per default, this option is disabled though.

=-City

H-City
- KL

[o I P ey P e |

H-Gen

Ready

File Project View Help

ML Import

~Continuation
~gml:id handling
~-Bounding box
~Address

- Appearance

=10

- Indexes

- XML validation
~X¥8L transformation
- Import log
~Resources

ML Export
JCOLLADAfgITF Expart

r-Database

eral

ﬁ. 3D City Database Importer/Exporter

Import Export KML/COLLADA/QITF Export Database Preferences

Geometry

Affine transformation of coordinates
Apply affine transformatiors

Transformation matric (3xd)

(mygemy3m gy, = 1 0
(M 3y,Mo3My3mMay) = |0 1
{m_'.l'l.rm_w_.rmﬂ.rm}q} =0 [i]

Predefined transformation matrices

Identity matrix

Restore Default

— O X
0 0
0 0
1 0
Swap XY
Apply
Database disconnected

Fig. 3.30: CityGML import preferences — Geometry.

An affine transformation (cf. [Weis2015]) is any transformation that preserves collinearity (i.e., points initially lying
on a line still lie on a line after transformation) and ratios of distances (e.g., the midpoint of a line segment remains the
midpoint after transformation). It will move lines into lines, polylines into polylines and polygons into polygons while
preserving all their intersection properties. Geometric contraction, expansion, dilation, reflection, rotation, skewing,
similarity transformations, spiral similarities, and translation are all affine transformations, as are their combinations.

The affine transformation is defined as the result of the multiplication of the original coordinate vectors by a matrix

plus the addition of a translation vector.

T =AeP+ 1

In matrix form using homogenous coordinates:

’

mi1 Mi2 M1z Mig
= |M21 M22 M23 M2q4| ®
™m31 M3z M33 M34

N e 8

188

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

The coefficients of this matrix and translation vector can be entered in this preferences dialog (cf. Fig. 3.30). The
first three columns define any linear transformation; the fourth column contains the translation vector. The affine
transformation does neither affect the dimensionality nor the associated reference system of the geometry object, but
only changes its coordinate values. It is applied the same to all coordinates in all objects in the original CityGML file.
This also includes all matrixes in CityGML like the 2x2 matrixes of GeoreferencedTextures, the 3x4 transformation
matrixes of TexCoordGen elements used for texture mapping and the 4x4 transformation matrixes for ImplicitGeome-
tries.

Warning: An affine transformation cannot be undone or reversed after the import using the Importer/Exporter.

Two elementary affine transformations are predefined: 1) Identity matrix (leave all geometry coordinates unchanged),
which serves as an explanatory example of how values in the matrix should be set, and 2) Swap X/Y, which exchanges
the values of x and y coordinates in all geometries (and thus performs a 90 degree rotation around the z axis). The
latter is very helpful in correcting CityGML datasets that have northing and easting values in wrong order.

Example: For an ordinary translation of all city objects by 100 meters along the x-axis and 50 meters along the y-axis
(assuming all coordinate units are given in meters), the identity matrix must be applied together with the translation
values set as coefficients in the translation vector:

1 0 0 100
7 =10 10 50|e%
001 0

3.6.1.6 Indexes

In addition to the Database tab on the operations window, which lets you enable and disable spatial and normal indexes
in the 3D City Database manually (cf. Section 3.2.2), with this preference settings a default index strategy for database
imports can be determined.

The dialog differentiates between settings for spatial indexes [1] and normal indexes [2] but offers the same options
for each index type.

The default setting is to not change the status (i.e., either enabled or disabled) of the indexes. This default behavior
can be changed so that indexes are always disabled before starting and import process. The user can choose whether
the indexes shall be automatically reactivated after the import has been finished.

Note: All indexes are enabled after setting up a new instance of 3D City Database.

Note: It is strongly recommended to deactivate the spatial indexes before running a CityGML import on a big amount
of data and to reactive the spatial indexes afterwards. This way the import will typically be a lot faster than with spatial
indexes enabled. The situation may be different if only a small dataset is to be imported. Deactivating normal indexes
should however never be required.

Warning: Activating and deactivating indexes can take a long time, especially if the database fill level is high.
Note that the operation cannot be aborted by the user since this could result in an inconsistent database state.

3.6. Preferences 189

3D City Database for CityGML, Release 4.1

I 3D City Database Importer/Exporter - O X
File Project View Help
Import Export KML/COLLADA/QITF Export Datshase Preferences
E-CityGML Import Indexes
—Continuation
—gmi:id handiing Spatial indexes
—Bounding box
 add (® Keep index status
—Appearance () Deactivate before import and automatically reactiva
-~ Geometry {C) Deactivate before import and keep deactivated
XML validation -
—XSL transformation Normal indexes
—Import log (®) Keepindex status
- Resources (O Deactivate before import and automatically reactiva
- CityGML Export
[#)-KML /COLLADA /gITF Export (_) Deactivate before mport and keep deactivated
(#-Database
#-General
Ready Database disconnected

Fig. 3.31: CityGML import preferences — Indexes.

190 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

3.6.1.7 XML validation

On the Import tab of the operations window, the CityGML input files to be imported into the database can be manually
validated against the official CityGML XML Schemas. This preference dialog lets a user choose to perform XML
validation automatically with every database import.

¥ 3D City Database Importer/Exporter — (| X

File Project View Help
Import Export KML/COLLADA/QITF Export Database Preferences

= CityGML Import XML validation
~Continuation

~gml:id handling Validation of CityGML documents
B ding b
aunding box [] Perform XML validation during database import

-Address
- Appearance Invald top-evel features will mot be imported

~Geometry [] Justreport one error per top-evel feature
-~ Indexes
ML validation
-X¥5L transformation
~Import log

~Resources
H-CityGML Export
F-KML/COLLAD A gITF Export
r-Database
H-General

=1---=1---F--- [

Restore Default Apply

Ready Database disconnected

Fig. 3.32: CityGML import preferences — XML validation.

In general, it is strongly recommended to ensure (either manually or automatically) that the input files are valid with
respect to the CityGML XML schemas. Invalid files might cause the import procedure to behave unexpectedly or even
to abort abnormally.

If XML validation is chosen to be performed automatically during imports, then every invalid top-level feature will be
discarded from the import. Nevertheless, the import procedure will continue to work on the remaining features in the
input file(s).

Validation errors are printed to the console window. Often, error messages quickly become lengthy and confusing. To
keep the console output low, the user can choose to only report the first validation error per top-level feature and to
suppress all subsequent error messages.

Note: The XML validation in general does not require internet access since the CityGML XML schemas are packaged
with the Importer/Exporter. These internal copies of the official XML schemas will be used to check CityGML XML

3.6. Preferences 191

3D City Database for CityGML, Release 4.1

content in input files. The user cannot change this behavior. External XML schemas will only be considered in case
of unknown XML content, which might require internet access. Precisely, the following rules apply:

 If an XML element’s namespace is part of the official CityGML 2.0 or 1.0 standard, it will be validated against
the internal copies of the official CityGML 2.0 or 1.0 schemas (no internet access needed).

* If the element’s namespace is unknown, the element will be validated against the schema pointed to by the
xsi:schemaLocation value on the root element or the element itself. This is necessary when, for instance, the in-
put document contains XML content from a CityGML Application Domain Extension (ADE). Note that loading
the schema might require internet access.

* If the element’s namespace is unknown and the xsi:schemaLocation value (provided either on the root element
or the element itself) is empty, validation will fail with a hint to the element and the missing schema document.

3.6.1.8 XSL Transformation

This preference is used to apply changes to the CityGML input data before it is imported into the database using XSL
transformations. Simply check the Apply XSLT stylesheets option and point to an XSLT stylesheet in your local file
system using the Browse button. The stylesheet will be automatically considered by the import process to transform
the CityGML data.

By clicking the + and - buttons, more than one XSLT stylesheet can be fed to the importer. The stylesheets are executed
in the given order, with the output of a stylesheet being the input for its direct successor. The Importer/Exporter
is shipped with example XSLT stylesheets in subfolders below templates/ XSLTransformations in the installation
directory.

Note: To be able to handle arbitrarily large input files, the importer chunks every CityGML input file into top-level
features, which are then imported into the database. Each XSLT stylesheet will hence just work on individual top-level
features but not on the entire file.

Note: The output of each XSLT stylesheet must again be a valid CityGML structure.

Note: Only stylesheets written in the XSLT language version 1.0 are supported.

3.6.1.9 Import log

A CityGML import process not necessarily works on all CityGML features within the provided input file(s). An
obvious reason for this is that spatial or thematic filters that naturally narrow down the set of imported features. Also,
in case the import procedure aborts early (either requested by the user or caused by severe import errors), not all input
features might have been processed. To understand which top-level features were actually loaded into the database
during an import session, the user can choose to let the Importer/Exporter create an import log.

Simply enable the checkbox on this settings dialog to activate import logs (disabled per default). You additionally must
provide a folder where the import log files will be created in. Either type the folder name manually or use the Browse
button to open a file selection dialog. The application proposes to use a folder within your user’s home directory, but
this proposal can be overridden.

To easily relate import logs to different 3D City Database instances managed on the Database tab, the Im-
porter/Exporter creates one subfolder for each connection entry below the folder provided in the settings dialog. The
description text of the connection entry (cf. Section 3.2.1) is used as folder name. Within that subfolder, a separate

192 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

¥ 3D City Database Importer/Exporter — O X

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

[=-CityGML Import X5SL transformation
~Continuation

~gmi:id handling XSLT stylesheets

~Bounding box . .
- Address Apply XSLT stylesheets

- Appearance
-Geometry Stylesheet Browse =

~Indexes
- XML validation
~Import log

~R.esources
H-CityGML Export
F-KML/COLLADA/QITF Expart
--Databasze
- General

=...1%1--. 15 IF 1

Restore Default Apply

Ready Database disconnected

Fig. 3.33: CityGML import preferences — XSL transformation.

3.6. Preferences 193

3D City Database for CityGML, Release 4.1

[3D City Database Importer/Exporter — O X

File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

[=|-CityGML Import Import log
--Continuation
-gml:id handling Import log
-Boundina b
____AEudl:Elszg ox Write imported top-Hevel feature to log file
- Appearance Ci\Wsersonagel'\3ddtydbimpor ter-expor terYog\impor ted-features Browse
~aeametry
~Indexes

- XML validation

-¥5L transformation
~Resources

- CityGML Export
H-KML/COLLADA fglTF Export
H-Database

H-General

Restore Default Apply

Ready Database disconnected

Fig. 3.34: CityGML import preferences — Import log.

194 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

log file is created for every input file during an import to that 3D City Database connection. The filename includes the
date and time of the import session according to following pattern:

imported-features-yyyy_ MM_dd-HH_mm_ss_SSS.log

The import log is a simple CSV file with one record (line) per imported top-level feature. The following figure shows
an example.

" imported_features-2015_01_15-23_18_58_414.txt - Editor ‘ EESREEREE

Datei Bearbeiten Format Ansicht F

#3D City Database Importer/Exporter, version "3.0-bl45" -
#Imported top-level features from file: C:‘\test.gml
#Database connection string: citydb@localhost:5432/test
#Timestamp: 2014,/10/21 23:18:59.414
FEATURE_TYPE,CITYOBJECT_ID,GMLID_IN_FILE
BUILDING,46759,GEEB_TH_Default_GEB_2034
BUILDING,46760,GEE_TH_Default_GEB_124
BUILDING,46763,GEB_TH_Default_GEB_1519
BUILDING,46768,GEEB_TH_Default_GEB_1137
BUILDING,46772,GEBE_TH_Default_GEB_1153
BUILDING,46776,GEB_TH_Default_GEB_1229
BUILDING,46779,GEE_TH_Default_GEB_1755
BUILDING,46783,GEB_TH_Default_GEB_1261
BUILDING,46791,GEEB_TH_Default_GEB_1017
BUILDING,46799,GEE_TH_Default_GEB_1291
BUILDING,46804 ,GEB_TH_Default_GEB_1145
BUILDING,46808,GEE_TH_Default_GEB_1479
BUILDING,46815,GEE_TH_Default_GEB_1319
BUILDING,46821 ,GEB_TH_Default_GEB_1471
BUILDING,46825,GEEB_TH_Default_GEB_1041
BUILDING,46828,GEE_TH_Default_GEB_1117
BUILDING,46831,GEB_TH_Default_GEB_1551

#Import successfully finished.

Fig. 3.35: Example import log.

The first four lines of the import log contain metadata about the version of the Import/Exporter that was used for the
import, the absolute path to the CityGML input file, the database connection string, and the timestamp of the import.
Each line starts with # character in order to mark its content as metadata.

The first line below the metadata block provides a header for the fields of each record. The field names are FEA-
TURE_TYPE, CITYOBJECT_ID, and GML_ID_IN_FILE. A single comma separates the fields. The records follow
the header line. The meaning of the fields is as follows:

 FEATURE_TYPE An uppercase string representing the type of the imported CityGML feature.

e CITYOBJECT_ID The value of the ID column (primary key) of the CITYOBJECT table where the feature was
inserted.

¢ GML_ID_IN_FILE The original gml:id value of the feature in the input file (might differ in database due to
import settings).

The last line of each import log is a footer that contains metadata about whether the import was successfully finished
or aborted.

3.6. Preferences 195

3D City Database for CityGML, Release 4.1

3.6.1.10 Resources

Multithreading settings. The software architecture of the Importer/Exporter is based on multithreading. Put simply,
the different tasks of an import process are carried out by separate threads. The decoupling of compute bound from
I/O bound tasks and their parallel non-blocking processing usually leads to an increase of the overall application
performance. For example, threads waiting for database response do not block threads parsing the input document or
processing the CityGML input features. In a multi-core environment, threads can even be executed simultaneously on
multiple CPUs or cores.

The Resource settings allow for controlling the minimum and maximum number of concurrent threads during import
[1]. Make sure to enter reasonable values depending on your hardware configuration. By default, the maximum
number is set to the number of available CPUs/cores times two. Before starting the import process, the minimum
number of threads is created. Further threads up to the specified maximum number are only created if necessary.

Warning: A higher number of threads does not necessarily result in a better performance. In contrast, a too high
number of active threads faces disadvantages such as thread life-cycle overhead and resource thrashing. Also, note
that each thread requires its own physical connection to the database. Therefore, your database must be ready to
handle enough parallel physical connections. Ask you database administrator for assistance.

Cache settings. The Importer/Exporter employs strategies for parsing CityGML datasets of arbitrary file size and
for resolving XLink references. A naive approach for XLink resolving would read the entire CityGML dataset into
main memory. However, CityGML datasets quickly become too big to fit into main memory. For this reason, the
import process follows a two-phase strategy: In a first run, features are written to the database neglecting references
to remote objects. If a feature contains an XLink though, any context information about the XLink is written to
temporary database tables. This information comprises, for instance, the table name and primary key of the referencing
feature/geometry instance as well as the gml:id of the target object.

In addition, while parsing the document, the import process keeps track of every encountered gml:id as well as the
table name and primary key of the corresponding object in database. It is important to record this information because
a priori it cannot be predicted whether or not a gml:id is referenced by an XLink from somewhere else in the document.
In order to ensure fast access, the information is cached in memory. If the maximum cache size is reached, the cache is
paged to temporary database tables to prevent memory overflows. In a second run, the temporary tables containing the
context information about XLinks are revisited and queried. Since the entire CityGML document has been processed
at this point in time, valid references can be resolved and processed accordingly. With the help of the gml:id cache,
the referenced objects can be quickly identified within the database.

The caching and paging behaviour for gml:id values can be influenced via the Resource preferences [3]. The dialog
lets a user enter the maximum number of gml:id values to be held in main memory (default: 200,000 entries), the
percentage of entries that will be written to the database if the cache limit is reached (page factor, default: 85%), as
well as the number of parallel temporary tables used for paging (table partitions, default: 10). The Importer/Exporter
employs different caches for gml:id values of geometries and features [3]. Moreover, a third cache is used for handling
texture atlases and offers similar settings [4].

Batch settings. In order to optimize database response times, multiple database statements are submitted to the
database in a single request (batch processing). This allows for an efficient data processing on the database side. The
user can influence the number of SQL statements in one batch through the settings dialog [2]. The dialog differentiates
between batch sizes for CityGML features (default: 20) and gml:id caches respectively temporary XLink information
(default: 1000 each).

Note: All database operations within one batch are buffered in main memory before being submitted to the database.
Thus, the Importer/Exporter might run out of memory if the batch size is too high. After a batch is submitted, the
transaction is committed.

196 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

a 3D City Database Importer/Exporter

File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

| Topdev e5

() CityGML Export 1000

=1-CityGML Import Resources

.~ Continuation
gml:id _handﬁng Multithreaded processing
é-----Eaundmg box Minimal number of threads 2
~Address :
Amearance Maximal number of threads 8
é—----Geometry
é—----mdexes _ Batch processing
XML validation]
XSL transformation Commit after |2|:l
- Import log 1000

| gml:id ies

| temporary information

e-KML/COLLADA/gITF Export

+-Database gml:id cache
&-General Geometry | 200000 Entries
85 ' Page factor [%)
.10 | T itions
Features | 200000
85 | Page factor [%)
10 Table partitions
Texture image cache
Texture images 200000
85 | r (%]
10 | Table partitions
Restore Defalt | | Apply |
Ready Database disconnected

Fig. 3.36: CityGML import preferences — Resources.

3.6. Preferences

197

3D City Database for CityGML, Release 4.1

3.6.2 CityGML export preferences
3.6.2.1 CityGML version

The CityGML version preference settings let you choose the target CityGML version when exporting 3D city model
content from the database to a CityGML dataset.

i 3D City Database Importer/Exporter — ([l X

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

+-CityGML Import CityGML version
[=]- CityGML Export

g CityGML version CityGML version of instance document

~-Tiling options)
- CityObjectGroup ® v2.0.0 (OGC Encoding Standard)

--Address O vi.0.0
- Appearance

~-XLinks

- XSL transformation
~~Resources

[+ KML/COLLADA/gITF Export

[+]-Database

+]-General

Restore Default Apply

Ready Database disconnected

Fig. 3.37: CityGML export preferences — CityGML version.

The default value is CityGML version 2.0.0, which is the current version of the OGC CityGML Encoding Standard.
In addition, also the preceding version 1.0.0 is still supported.

Note: CityGML 2.0.0 introduces new feature types such as bridges and tunnels that are not available in CityGML
1.0.0. If the 3D City Database instance contains features of these types, they will be neglected in an export to CityGML
version 1.0.0 simply because they cannot be encoded in this version.

3.6.2.2 Tiling options

The Importer/Exporter allows for applying a spatial bounding box filter to CityGML exports on the Export tab of the
operations window. To trigger a tiled export, a user can additionally check the 7iling option and provide the number
of rows of columns into which the bounding box shall be evenly split (cf. Section 3.4).

When tiling is enabled, the export operation iterates over all tiles within the bounding box and exports the city objects
on each tile. Every tile is exported to its own file within a separate subfolder of the export directory. With the Tiling

198 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

options preferences, the names of the subfolders and tile files can be adapted as shown in Fig. 3.38.

Each subfolder name consists of a prefix and a tile-specific suffix [1]. The suffix may contain the row and column
number of the tile exported or a combination of the tile’s minimum / maximum coordinates. If a coordinate suffix is
chosen, the coordinates will be given in the reference system specified for the CityGML export (cf. Section 3.4; default
value is the internal SRS of the 3D City Database instance), even if the coordinates of the bounding box filter are given
in another user-defined SRS. This makes it easy to relate objects to tiles since the coordinates of the objects contained
in the tile are exported in the same reference system. The filename of the CityGML instance document created in each
subfolder corresponds to the one defined on the Export tab. However, a tile-specific suffix may be appended [1].

4 3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

+-CityGML Import Tiling options
— CityGML Export
i CityGML version ~Output directory and file name for tiles
{ Each tile is exported to a subdirectory of the export directory
b CityObjectGroup i .
~Address Tile subdirectory tile
" Appearance Subdirectory suffix | row / column ~
~XLinks
-XSL transformation Filename suffix No suffix W
. ~Resources
+ KML/COLLADA/gITF Export Further tiling options
+ Database |:| Export tile information as generic attribute
+-General
Name |TILE
Value | Xmin [Ymin / Xmax / Ymax
Restore Default Apply
Ready Database disconnected

Fig. 3.38: CityGML export preferences — Tiling options.
For further traceability, it is possible to attach a generic string attribute called TILE to each exported CityGML feature,

indicating which tile it belongs to [2]. The options for the value of the generic attribute are the same as for the suffix
of the tile subfolder.

3.6.2.3 CityObjectGroup

When exporting city object groups, also group members are written to the target CityGML dataset (cf. Section 3.4).
Group members are always given by reference (i.e., the grp:member property uses an xlink:href reference to point to

3.6. Preferences 199

3D City Database for CityGML, Release 4.1

the group member in the dataset) and only group members satisfying the export filter settings are considered.

i 3D City Database Importer/Exporter — O X

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

[+]- CityGML Import CityObjectGroup
~J- CityGML Export

- CityGML version
~-Tiling options

Export all group members as xlink:href references
BCityObjectGroup O P group
-Address Filter settings are not applied

Export of group members

- Appearance

~-XLinks

~-XSL transformation
~-Resources

[+ KML/COLLADA/gITF Export
EI Database

+-General

Restore Default Apply

Ready Database disconnected

Fig. 3.39: CityGML export preferences — CityObjectGroup.

The default behavior can be changed using this preference dialog. When checking the option Export all group members
as xlink:href references, then an xlink:href reference is created for each group member defined in the database, no
matter whether this group member is also exported or skipped due to filter settings. Thus, the consistency of the
xlink:href references is not checked, and some references might not be resolvable in the final dataset. The benefit of
skipping this check is that the performance of the CityGML export is increased.

3.6.2.4 Address

Like the import of xAL address information (see Section 3.6.1.3), the user can choose how address information should
be exported to a target CityGML dataset. The available options of the Address export preferences are shown in the
figure below.

Address information is exported form the data values in the ADDRESS table of the 3D City Database instance. As
discussed in Section 3.6.1.3, these values may however lack data present in the original xAL fragment or they may
even contain no data at all when the address information differs too much from the supported XAL templates. In
such cases, using the original <xal:AddressDetail> element stored in the XAL_SOURCE column is the only means to
achieve a lossless reconstruction of the initial address data.

Since importing the original <xal:AddressDetail> fragment into XAL_SOURCE does not hinder the population of
the remaining columns of the ADDRESS table (STREET, HOUSE_NUMBER, etc.), there are two possible ways to
reconstruct the address contents when exporting from the 3D City Database.

200 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

4 3D City Database Importer/Exporter — [l X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

|- CityGML Import Address
[=]- CityGML Export
-~ CityGML version Generation of XAL address information
~-Tiling options
- 9 _p (® Create xAL address from data values in the ADDRESS table
- CityObjectGroup
m (O Export original <xal:AddressDetails> XML fragment
“~Appearance [] Use the other method as fallback
- XLinks
-~ XSL transformation
~Resources

[+]- KML/COLLADA/gITF Export

+]-Database

[+]-General

Restore Default Apply

Ready Database disconnected

Fig. 3.40: CityGML export preferences — Address.

3.6. Preferences 201

3D City Database for CityGML, Release 4.1

1) The default option is to build the xAL address from the columns of the ADDRESS table without considering
the XAL_SOURCE column. In this case, the XML encoding of the xAL address follows the first template (cf.
Section 3.6.1.3).

2) Optionally, the xAL fragment is taken “as is” from the XAL_SOURCE column and inserted literally into the
target CityGML document. This way there will be no loss of information and the address encoding will be
identical to the original source datasets. Obviously, this option requires that the XAL_SOURCE column has
been populated during import (cf. Section 3.6.1.3).

Both options are mutually exclusive, but one can be used as a fallback alternative to the other if the first chosen renders
no results.

3.6.2.5 Appearance

The Appearance export preferences are like the settings available for importing CityGML (cf. Section 3.6.1.4).

B 3D City Database Importer/Exporter - O X
File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences
+|- CityGML Import Appearance
—|-CityGML Export
| CityGML version - Export of appearances
+Tiling options
Export
~-CityObjectGroup @ POFE appearances
-Address Overwrite existing texture files
i Generate unigue texture filenames
..... xl.lﬁkS
- XSL transformation [[] Do not store texture files
| Resources () Da not export appearances
) KML/COLLADA/gITF Export
+-Database C
I Output diectory for texture files
+|-General
Relative or absolute directory |appearance Browse
|:| Automatically place texture files in additional subfolders (number): |0
Restore Default Apply
Ready Database disconnected

Fig. 3.41: CityGML export preferences — Appearance.

Per default, both appearance information and texture image files associated with the city objects in the 3D City
Database are exported [1]. Alternatively, the user can choose to only export the appearance information without
storing the texture files or even to not export appearances at all.

When exporting texture files, two additional options Overwrite existing texture files and Generate unique texture
filenames influence the way in which texture files are written to the file system [1].

1) Overwrite existing texture files: Texture files are stored in a separate folder of the file system. Before exporting
a texture image file into this folder, the Importer/Exporter can check whether a file of the same filename already

202 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

exists in this folder. In this case, the existing file will be kept if this option is not enabled. Otherwise, and per
default, there is no check and a texture file of the same name will be overwritten (if it exists).

2) Generate unique texture filenames: Often filenames for texture images are automatically created from a naming
scheme involving some counter (e.g., a prefix “fex” followed by a number incremented by 1 for each new image).
It thus can happen that two city objects within the same or different instance documents are assigned a texture
image file of the same name but with different content (e.g., if the texture files are distributed over several
folders). In the 3D City Database, texture images are stored in separate records and thus duplicate filenames are
not an issue. When exporting to CityGML however, two texture files of the same name might be written to the
same target folder, in which case one is replaced with the other. This will obviously lead to false visualizations
and issues in workflows consuming the exported CityGML data. For this reason, checking this option (default)
will force the export process to generate unique filenames for each texture file based on the primary key value
of the TEX_IMAGE table. Therefore, the filename even keeps stable amongst several exports from the 3D City
Database.

The location where to store the texture files can be defined by the user [2]. The default option is to pick a folder below
the export directory and thus relative to the target CityGML file. The default folder name is “appearance”. Instead of
a local path, also an absolute path can be provided. In this case, the same folder will be used in subsequent exports
from the 3D City Database.

When appearances are chosen to be exported but the Do not store texture files option [1] is enabled, then appearance
information is generated for the city objects in the CityGML dataset, but the texture files are not stored in the file
system. However, since the texture path is part of the appearance information, the directory settings [2] and whether
to generate unique texture filenames [1] still has an impact on the generated appearance information. The Do not store
texture files option is useful, for example, if the texture files have already been exported to an absolute directory in a
previous run of the export operation.

Especially when using Windows, placing a large number of files into the same folder might lead to severe time lags
when trying to access files in this folder or to write new files to this folder. This might negatively affect the performance
for large exports. For this reason, the Importer/Exporter can automatically distribute the texture files over additional
subfolders that are automatically created. Simply check the option Automatically place texture files in additional
subfolders and provide the number of subfolders to be used.

3.6.2.6 XLinks

Both the 3D City Database and the Importer/Exporter are capable of handling XLinks. If the CityGML input docu-
ment that is imported into the 3D City Database contains XLink references to features and/or geometries, then this
information is kept in the database in order to be able to reconstruct the XLinks upon database export. This is also the
default behavior.

Depending on the target application that consumes the exported CityGML dataset, this default behavior may be disad-
vantageous, especially if the target application cannot follow and resolve XLink references. In such cases, the XLinks
preference settings let a user change the default behavior so that the referenced objects are exported by value rather
than by reference. Put differently, instead of an XLink reference, a copy of the original feature or geometry is placed
into the CityGML dataset. This necessarily requires that the gml:id of the copy is different from the gml:id of the
original object because identical gml:id values are not allowed in the same dataset. The Importer/Exporter takes care
of this issue and creates new gml:id values for the copies based on UUID values.

The user can define the behavior for exporting XLinks differently for features [1] and geometries [2]. The settings
allow to provide a prefix string that will be used when creating new gml:id values (default: “UUID_"). In addition,
the original gml:id may be appended to the newly created one. Whereas these settings are available for both features
and geometries, the user can additionally choose to create a CityGML <ExternalReference> element for features that
carries the original gml:id value and to attach this external reference as attribute to the copied feature.

3.6. Preferences 203

3D City Database for CityGML, Release 4.1

i 3D City Database Importer/Exporter - O X

File Project View Help

Import Export KML/COLLADA/GITF Export Database Preferences

+ CityGML Import XLinks
= CityGML Expert
- CityGML version - Multiple export of feature elements
~-Tiling options i yoch
! u
.- CityObjectGroup (® Use XLink reference to existing feature element
i Address () Copy feature element (use UUID as new gml:id)
--Appearance gml:id prefix |UUID_
. -XSL transformation Store original gml:id as external reference
;, g Append original gml:id to new gml:id
+ KML/COLLADA/gITF Export
i— - Multiple export of geometry elements
+ General ultiple export of geometry elemen
(® Use XLink reference to existing geometry element
O Copy geometry element (use UUID as new gml:id)
gml:id prefix |UUID_
Append original gml:id to new gml:id
Restore Default Apply
Ready Database disconnected

Fig. 3.42: CityGML export preferences — XLinks.

204 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

3.6.2.7 XSL Transformation

As available for CityGML imports, you can apply XSLT transformations during the export process to change the
resulting CityGML output data. Simply check the Apply XSLT stylesheets option and point to an XSLT stylesheet in
your local file system using the Browse button. The stylesheet will be automatically considered by the export process
to transform the CityGML data before it is written to a file.

i 3D City Database Importer/Exporter — (Il X

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

-- CityGML Import XSL transformation
[=]- CityGML Export
- CityGML version XSLT stylesheets

--Tiling options
/| Apply XSLT stylesheet:
--CityObjectGroup PPy stylesheets

--Address
--Appearance Stylesheet Browse +
- XLinks

--Resources

[+]- KML/COLLADA/gITF Export
-- Database

[+]-General

Restore Default Apply

Ready Database disconnected

Fig. 3.43: CityGML export preferences — XSL transformation.

By clicking the + and - buttons, more than one XSLT stylesheet can be fed to the exporter. The stylesheets are executed
in the given order, with the output of a stylesheet being the input for its direct successor. The Importer/Exporter
is shipped with example XSLT stylesheets in subfolders below templates/ XSLTransformations in the installation
directory.

Note: To be able to handle arbitrarily large exports, the export process reads single top-level features from the
database, which are then written to the target file. Each XSLT stylesheet will thus just work on individual top-level
features but not on the entire file.

Note: The output of each XSLT stylesheet must again be a valid CityGML structure.

Note: Only stylesheets written in the XSLT language version 1.0 are supported.

3.6. Preferences 205

3D City Database for CityGML, Release 4.1

3.6.2.8 Resources

Just like with CityGML imports, the export process is implemented based on multithreaded data processing in order
to increase the overall application performance. Likewise, in order to reconstruct XLinks during exports (cf. Section
3.6.2.6), the export process also needs to keep track of each and every gml:id of exported features and geometry
objects. For fast access, the gml:id values are kept in main memory and are only paged to temporary database tables
in case the predefined cache size limit is reached.

i 3D City Database Importer/Exporter — ([X
File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences
-- CityGML Import Resources
[=]- CityGML Export
"'"C?t_VGML \fersion Multithreaded processing
-----T!Img c_npt|ons Minimal number of threads |2
- CityObjectGroup
--Address Maximal number of threads |8
- Appearance
- XLinks gml:id cache
- XSL transformation .
w Geometry 200000 Entries
----- Resources
[+-KML/COLLADA/gITF Export 85 Page factor [%]
+- Database -
[-General 10 Table partitions
Features 200000 Entries
85 Page factor [%]
10 Table partitions
Restore Default Apply
Ready Database disconnected

Fig. 3.44: CityGML export preferences — Resources.
The Resource preferences allow for setting the number of concurrent threads to be used in the export process and for

defining the sizes and page factors of the gml:id caches for features and geometries. The meaning of the values is
identical to the Resource preferences for CityGML imports. So please refer to Section 3.6.1.10 for more details.

3.6.3 KML/COLLADA/gITF export preferences

The preferences tab contains four subnodes — General, Rendering, Balloon, and Altitude/Terrain — make customization
of these exports possible. These settings will be explained in the following sections in details.

206 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

3.6.3.1 General Preferences

Some common features of the exported files, especially those related to tiling options, can be set under the preferences
tab, node KML/COLLADA/QITF Export, subnode General.

B 3D City Database Importer/Exporter

File Project Wiew Help
Import Export KML/COLLADA/QTF Export ADE Manager SPSHG Database Preferences
- CityGML Import General
[#-CityGML Export
El-KML/COLLADAgITF Expart
I Create gITF model; Path of the COLLADA2gITF tool:
Rendering contribs\collada 2gtF\COLLADA 2GLTE-v 2, 1. 3-windows-Release-x5HCOLL Browse
Balloon
AltitudeTerrain [] Donotceate COLLADA {.dae) files
B-Database .
: Embed textures in glTF (.gltf) files
[+-General L ofTF (.gltf)
(") Export gITF version 1.0
(@ Export gITF version 2.0
[] Expertin .kmz format
Show bounding box borders
Show tile borders
Tile side length for automatic tiing 125.0 m.
[] Each CityObijectin an own region
visible from |50.0 pixels
view refresh mode |onRegion
view refresh time |1.0 5,
Write JSON file
[] of type 150MP
with callback method name
handle_3DCityDB_data
Restore Default
Ready Database disconnected
Fig. 3.45: General settings for the KML/COLLADA/gITF export
Create gITF model

In addition to COLLADA models, the Importer/Exporter can also create gITF models for efficient loading and ren-
dering of 3D contents on WebGL-enabled web browsers. If the “Create gITF model” option is activated, the Im-
porter/Exporter requires an open source tool called COLLADA2gITF to convert the exported COLLADA models to

3.6. Preferences 207

https://github.com/KhronosGroup/COLLADA2GLTF/wiki

3D City Database for CityGML, Release 4.1

gITF models. The COLLADA2gITF tool is available for Windows, Linux, and Mac OS X and has been installed to-
gether with the Importer/Exporter and located in the subfolder contribs/collada2gltf of the installation directory. Per
default, the relative path (depending on the operating system in use) of the COLLADAZ2gITF tool is proposed in the
Path of the COLLADA2gITF tool text field whose value will be used by the Importer/Exporter to run the target exe-
cutable file. Thus, if you want to use another version of the COLLADA2gITF tool, its absolute path has to be manually
specified using, for example, the Browse button to open a file selection dialog. Starting with the Importer/Exporter
version 4.0.0 however, version 2.1.0 or later of the COLLADA2gITF tool is required in order to enable support for
both gITF version 1.0 and 2.0. The pre-installed COLLADAZ2gITF binaries come already in version 2.1.3. It is also
possible to just export gITF models without COLLADA models by activating the Do not create COLLADA (.dae) files
checkbox.

When exporting a textured city object in gITF, its texture images can either be encoded in the Base64 format and
embedded into the gITF file, or saved as separate image files in the same directory as the gITF file having references to
them. This can be controlled by the setting Embed textures in gITF (.gltf) files. In fact, both options have their pros and
cons: the gITF file without embedded texture images allows client applications to realize an incremental loading effect
which may give a better user experience, since the geometry contents and texture images can be loaded and rendered
consecutively. However, this will result in a large amount of AJAX requests which might possibly impair the overall
visualization performance especially when a large number of city objects are loaded simultaneously. This issue can be
avoided by choosing the way of embedding the texture images into the gITF file. However, loading of the geometries
and textures of a city object must be performed within one AJAX request that may slightly slow down the speed of the
visualization of individual city object.

Note: The exported gITF file can be further converted to the so-called binary gITF file which is a binary container for
gITF models and allows for faster loading and processing 3D objects. However, this conversion process is currently
not yet supported by the KML/COLLADA/gITF Exporter and therefore needs to be carried out later using third party
tools which can be found on the https://github.com/KhronosGroup/gITF website.

Export in kmz format

Determines in which format single files and tiled exports should be written: kmz when selected, kml when not.
Whatever format is chosen, the main file (so called master file, pointing to all others) will always be a kml file, all
other files will comply with this setting.

Tests have shown shorter loading times (in Google Earth) for the kml format (as opposed to kmz) when loading from
the local hard disk. The Earth Browser’s stability also seems to improve when using the uncompressed format. On
the other hand, when loading files from a server kmz reduces the amount of requests considerably, thus increasing
performance. Kmz is also recommended for a better overview since kml exports may lead to a large number of
directories and files.

The Export in kmz format and Create gITF model options are mutually exclusive. A warning message will be displayed
when the user trys to choose the both.

Show bounding box borders

When exporting a region of interest via the bounding box option in the KML/COLLADA/gITF Export tab, this check-
box specifies whether the borders of the whole bounding box will be shown or not. The frame of the bounding box is
four times thicker than the borders of any single tile in a tiled export.

Show tile borders

Specifies whether the borders of the single tiles in a tiled export will be shown or not.

208 Chapter 3. Importer-Exporter

https://github.com/KhronosGroup/glTF

3D City Database for CityGML, Release 4.1

Tile side length for automatic tiling

Applies only to automatically tiled exports and sets the approximate square size of the tiles. Since the Bounding Box
settings in the KML/COLLADA/gITF Export tab are the determining factor for the area to be exported and have priority
over this setting, the resulting tiles may not be perfectly square or have exactly the side length fed into this field.

Each CityObject in an own region

The visibility of the objects exported can be further fine-tuned by this option. While the visibility settings on the
main KML/COLLADA/gITF Export tab apply to the whole area (no tiling) or to each tile (automatic, manual) being
exported, this checkbox allows to individually define a KML <Region> for every single city object. The limits of the
object’s region are those of the object’s CityGML Envelope.

Note: This setting only takes effect when if the export KML/KMZ files are opened with Google Earth (Pro). The
Cesium-based 3D web client will silently ignore this setting.

Following the KML Specification [Wils2008], each KML <Region> is defined inside a KML <NetworkLink> and
has an associated KML <Link> pointing to a file. This implies when this option is chosen a subfolder is created for
each object exported, identified by the object’s gmlld. The object’s subfolder will contain any KML/COLLADA/gITF
files needed for the visualization of the object in the Earth browser. This folder structure (which can contain a large
number of subfolders) is required for the KML <Region> visibility mechanism to work.

When active, the parameters affecting the visibility of the object’s KML <Region> can be set through the following
related fields.

The field visible from determines from which size on screen the object’s KML <Region> becomes visible, regardless
of the visibility value of the containing tile, if any. Since this value is the same for every single object and they have
all different envelope sizes a good average value should be chosen.

The field view refresh mode specifies how the KML <Link> corresponding to the KML <Region> is refreshed
when the geographic view changes. May be one of the following:

* never - ignore changes in the geographic view.
* onRequest - refresh the content of the KML <Region> only when the user explicitly requests it.

* onStop - refresh the content of the KML <Region> n seconds after movement stops, where n is specified in
the field view refresh time.

* onRegion - refresh the content of the KML <Region> when it becomes active.

As stated above, the field view refresh time specifies how many seconds after movement stops the content of the KML
<Region> must be refreshed. This field is only active and its value is only applied when view refresh mode is onStop.

Write JSON file

After exporting some cityobjects in KML/COLLADA/gITF you may need to include them into websites or
somehow embed them into HTML. When working with tiled exports referring to a specific object inside the
KML/COLLADA/gITF files can become a hard task if the contents are loaded dynamically into the page. It is im-
possible to tell beforehand which tile contains which object. This problem can be solved by using a JSON file that is
automatically generated when this checkbox is selected.

In the resulting JSON file each exported object is listed, identified by its gmlld acting as a key and some additional
information is provided: the envelope coordinates in CRS WGS84 and the tile, identified by row and column, the
object belongs to. For untiled exports the tile’s row and column values are constantly 0.

3.6. Preferences 209

3D City Database for CityGML, Release 4.1

This JSON file has the same name as the so-called master file and is located in the same folder. Its contents can be
used for indexed search of any object in the whole KML/COLLADA/gITF export.

{

"BLDG_0003000b0013felf": {
"envelope": [13.411962, 52.51966, 13.41277, 52.520091],
"tile": [1, 1]

}V

"BLDG_00030009007£8007": {
"envelope": [13.406815, 52.51559, 13.40714, 52.51578],
"tile": [0, O]

}

The JSON file can automatically be turned into JSONP (JSON with padding) by means of adding a function call around
the JSON contents. JSONP provides a method to request data from a server in a different domain, something typically
forbidden by web browsers since it is considered a cross-site-scripting attack (XSS). Thanks to this minimal addition,
the JSON file contents can be more easily embedded into webpages or interpreted by web kits without breaking any
rules. The function call name to be added to the original JSON contents is arbitrary and must only be entered in the
callback method name field.

Note: Another solution for overcoming the restriction on making cross-domain requests is to make use of the Cross-
Origin Resource Sharing (CORS) mechanism by enabling the web server to include additional HTTP headers in the
response that allows web browsers to access the requested data. When working with the 3DCityDB-Web-Map-Client,
it is required that the web server storing the KML/COLLADA/gITF datasets must be CORS-enabled. In this case,
there is no need anymore to use this JSONP solution and the option of type JSONP should be deactivated.

3.6.3.2 Rendering Preferences

Most aspects regarding the look of the KML/COLLADA/gITF exports when visualized in virtual globes like Google
Earth and Cesium can be customized under the preferences tab, node KML/COLLADA/gITF Export, subnode Render-
ing. Each of the top-level feature categories has its own Rendering settings. For the sake of clarity the most complex
Rendering settings for Buildings will be explained here as an example. Settings for all other top-level features are ei-
ther identical or simpler. An exceptional case is GenricCityObject which can be exported into point or line geometries,
and the corresponding settings will be explained at the end of this section.

All settings in this menu are grouped according to the display form they relate to.

Footprint and extruded display options

In this section the fill and line colors can be selected. Additionally, it can be chosen whether the displayed objects
should be highlighted when being run over with the mouse or not. Highlighting colors can only be set when the
highlighting option is enabled. The alpha value affects the transparency of all colors equally: O results in transparent
(invisible) colors, 255 in completely opaque ones. A click on any color box opens a color choice dialog.

As defined in the CityGML specification [GKNH2012] CityGML version 2.0.0 allows LoDO representation (footprint
and roofprint representations) for buildings and building parts. If LoDO in the Level of Export setting on the main
KML/COLLADA/GITF Export tab is selected, there are three options available for LoDO geometry export:

« footprint: the footprint geometries of the buildings or building parts will be exported

* roofprint: the roofprint geometries of the buildings or building parts will be exported

210 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

II.'II

T 3D City Database Importer/Exporter

Eile Project Wiew Help

Import Export KML/COLLADA/QTF Export ADE Manager SPSHG Database Preferences

- CityGML Import Building
[CityGML Export
= KML/COLLADA/GITF Expart Footprint and extruded display options
-~ General Alpha-value (0-255) 2002
=}-Rendering
----- - ne coor [N
= Fill colar Line color
- WWaterBody
~LandUse Highlight when onMouseQver
----- Vegetation
----- Transportation Highlighted fill color Highlighted line color
-Relief
-CityFurniture .)
LODOD geometr operty selection | Footprint
[+-GenericCityObject d ¥ Propsry o —
- CityObjectGroup
~Bridge Geometry display options
----- Tunnel Alpha-value (0-255) 2005
++-Balloon
—AltitudeTerrain wall fill color Wall line color _
[+-Databaze
[-General Roof fil color _ Roof line color _

[] Highlight when onMouseCver

Highlighted fill colar Highlighted line color

Surface distance (0-10m) [0.75

COLLADA/gITF display options

Ignare surface orientation (<double_sided=1</double_sided =)

Generate surface normals

[] Crop texture images

Generate texture atlases with algorithm | BASIC w

Texture atlas sizes must be powers of 2

Scale texture images by (0.0-1.0) 0.4

These color settings are only used for objects without Appearance elements

Alpha-value (0-255) 255~
wall fil color roof fil color |

(@ Put objects together in groups of 1

(") Highlight when onMouseCOver {Just for Google Earth)

Highlighted fill color Highlighted line color

Surface distance (0-10m) [0.75

3.6. Preferences T Default Apply 211

Ready Database disconnected

3D City Database for CityGML, Release 4.1

* roofprint, if none then footprint: footprint geometries will be exported if none of the roofprint geometries are
found.

Geometry display options

This parameter section distinguishes between roof and wall surfaces and allows the user to color them independently.
The alpha value affects the transparency of all roof and wall surface colors in the same manner as in the footprint and
extruded cases: O results in transparent (invisible) colors, 255 in completely opaque ones. A click on any color box
opens a color choice dialog.

As previously stated: when not explicitly modeled, thematic surfaces will be inferred for LoD1 or LoD2 based exports
following a trivial logic (surfaces touching the ground —that is, having a lowest z-coordinate- will be considered wall
surfaces, all other will be considered roof surfaces), in LoD3 or LoD4 based exports surfaces not thematically modeled
will be colored as wall surfaces.

The highlighting effect when running with the mouse over the exported objects can also be switched on and off. Since
the highlighting mechanism relies internally on a switch of the alpha values on the highlighting surfaces, the alpha
value set in this section does not apply to the highlighted style of geometry exports, only to their normal style. For a
detailed explanation of the highlighting mechanism see the following section.

COLLADA/gITF display options

These parameters control the export of COLLADA and gITF models. The first option addresses the fact that sometimes
objects may contain wrongly oriented surfaces (points ordered clockwise instead of counter-clockwise) as a result of
errors in some previous data gathering or conversion process. When rendered, wrongly oriented surfaces will only
be textured on the inside and become transparent when viewed from the outside. Ignore surface orientation informs
the viewer to disable back-face culling and render all polygons even if some are technically pointing away from the
camera.

Note: This will result in lowered rendering performance. Correcting the surface orientation data is the recommended
solution. This option only provides a quick fix for visualization purposes.

The activation of the option Generate surface normal allows calculating the surface normals for the exported object
surfaces that can be illuminated with a shading effect in 3D scenes and therefore provides a better visual representation
of the 3D object which has a constant color throughout its surfaces. If this option is not activated, this 3D object will
be rendered as a solid geometry without any visual distinction of its boundary surfaces (cf. Fig. 3.47). However, when
exporting textured 3D models, the shading effect is not relevant, since the texture information can already provide a
sophisticated visual effect.

Note: Starting with version 4.0.0, the Importer/Exporter activates the option Generate surface normal by default for
all (top-level) features if such information is available.

Surface textures can be stored in an image file, or grouped into large canvases containing all images clustered together
so-called texture atlases, which can significantly increase the storage efficiency and loading speed of 3D models.
However, in some CityGML datasets, it might occur that a very large texture atlas image is shared by multiple surface
geometries belonging to many different city objects. In this case, every exported COLLADA/gITF model representing
a city object will receive a complete copy of the texture atlas image in which only a small portion of it is actually
used. This will result in extreme performance issues when loading and rendering such COLLADA/gITF models in
Earth browsers. In order to avoid this, the option Crop texture images shall be activated which allows cropping the
large texture atlas image into a number of small texture images, each of which could be very small in size and should
correspond to only one surface geometry of the city object.

212 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Fig. 3.47: Comparison of the different visual effects of the same 3D model with (the left figure) and without (the right
figure) surface normals

3.6. Preferences 213

3D City Database for CityGML, Release 4.1

With the option Generate texture atlases with algorithm, grouping images in an atlas or not and the algorithm selected
for the texture atlas construction (differing in generation speed and canvas efficiency) can be set here. Depending
on the algorithm and size of the original textures, an object can have one or more atlases, but atlases are not shared
between separate objects.

The texture atlas algorithms address the problem of two-dimensional image packing, also known as ‘knapsack prob-
lem’ in different ways (see [CGJT1980]):

* BASIC: recursively divides the texture atlas into empty and filled regions (see http://www.blackpawn.com/texts/
lightmaps/default.html). The first item is placed in the top left corner. The remaining empty region is split into
two rectangles along the sides of the item. The next item is inserted into one of the free rectangles and the
remaining empty space is split again. Doing this in a recursive way builds a binary tree representing the texture
atlas. When adding an item, there is no information of the sizes of the items that are going to be packed after this
one. This keeps the algorithm simple and fast. The items may be rotated when being inserted into the texture
atlas.

e TPIM: touching perimeter (see [LoMV1999] and [LoMM?2002]). Sorts images according to non-increasing
area and orients them horizontally. One item is packed at a time. The first item packed is always placed in the
bottom-left corner. Each following item is packed with its lower edge touching either the bottom of the atlas or
the top edge of another item, and with its left edge touching either the left edge of the atlas or the right edge of
another item. The choice of the packing position is done by evaluating a score, defined as the percentage of the
item perimeter which touches the atlas borders and other items already packed. For each new item, the score is
evaluated twice, for the two item orientations, and the highest value is selected.

* TPIM w/o image rotation: touching perimeter without rotation. Same as TPIM, but not allowing for rotation
of the original images when packing. Score is evaluated only once since only one orientation is possible.

From the algorithms, BASIC is the fastest (shortest generation time) and produces good results, whereas TPIM is the
most efficient (highest used area/total atlas size ratio).

Scaling texture images is another means of reducing file size and increasing loading speed. A scale factor of 0.2 to 0.5
often still offers a fairly good image quality while it has a major positive effect on these both issues. Default value is
1.0 (no scaling). This setting is independent from the atlas setting and both can be combined together. It is possible to
generate atlases and then scale them to a smaller size for yet shorter loading times in Earth browsers.

In the next parameter section, the fill color of the roof and wall surfaces can be set by clicking on the corresponding
color box to open the color selection dialog. The alpha value that affect the transparency of all surface colors can also
be selected from a range of 0 (completely transparent) to 255 (completely opaque).

Note: This setting only takes effect if none of the appearance themes (as defined in the CityGML specification
[GKNH2012]) is selected or available in the currently connected 3DCityDB instance.

Buildings can be put together in groups into a single model/placemark. This can also speed up loading, however it
can lead to conflicts with the digital terrain model (DTM) of the Earth browser, since buildings grouped together have
coordinates relative to the first building on the group (taken as the origin), not to the Earth browser’s DTM. Only the
first building of the group is guaranteed to be correctly placed and grounded in the Earth browser. If the objects being
grouped are too far apart this can result in buildings hovering over or sinking into the ground or cracks appearing
between buildings that should go smoothly together.

Up to Google Earth 7, no highlighting of model placemarks loaded from a location other than Google Earth’s own
servers is supported natively (glowing blue on mouse over). Therefore, a highlighting mechanism of its own was
implemented in the KML/COLLADA/gITF exporter: highlighting is achieved by displaying a somewhat “exploded”
version of the city object being highlighted around the original object itself. “Exploded” means all surfaces belonging
to the object are moved outwards, displaced by a certain distance orthogonally to the original surface. This “exploded”
highlighting surface is always present, but not always visible: when the mouse is not placed on any building (or rather,
on the highlighting surface surrounding it closely) this “exploded” highlighting surface has a normal style with an
alpha value of 1, invisible to the human eye. When the mouse is place on it, the style changes to highlighted, with

214 Chapter 3. Importer-Exporter

http://www.blackpawn.com/texts/lightmaps/default.html
http://www.blackpawn.com/texts/lightmaps/default.html

3D City Database for CityGML, Release 4.1

an alpha value of 140 (hard-coded), becoming instantly visible, creating this model placemark highlighted feel. The
displacement distance for the exploded highlighting surfaces can be set here. Default value is 0.75m.

Fig. 3.48: Object exported in the COLLADA display form being highlighted on mouseOver

This highlighting mechanism only works in Google Earth and has an important side effect: the model’s polygons
will be loaded and displayed twice (once for the representation itself, once for the highlighting), having a negative
impact in the viewing performance of the Earth browser. The more complex the models are, the higher the impact is.
This becomes particularly noticeable for models exported from a LoD3 basis upwards. The highlighting and grouping
options are mutually exclusive.

GenericCityObject

As previously stated: in addition to the standard support for surface and solid geometry exports, other geometry
types like point and line for the feature class GenricCityObject can also be exported in KML format. The related
rendering node contains two further independent subnodes (“Surface and Solid” and “Point and Curve”) that allows
for customizing the export of different geometry types individually. As the subnode “Surface and Solid” has similar
settings illustrated in the previous section, only the settings within the subnode “Point and Curve” will be explained
in the following paragraphs.

The field Altitude mode specifies how the Z-coordinates (altitude) of the exported point geometries are interpreted by
the earth browser. Possible value may be one of the following options:

* absolute: the altitude is interpreted as an absolute height value in meters according to the vertical reference
system (EGM96 geoid in KML).

« relative: the altitude is interpreted as a value in meters above the terrain. The absolute height value can be
determined by adding the attitude to the elevation of the point.

e clamp to ground: the altitude will be ignored and the point geometry will be always clamp to the ground
regardless of whether the terrain layer is activated or not.

3.6. Preferences 215

3D City Database for CityGML, Release 4.1

II.'II

T 3D City Database Importer/Exporter

Eile Project Wiew Help
Import Export KML/COLLADA/QTF Export ADE Manager SPSHG Database Preferences
--CityGML Impart Point and Curve
v CityGML Export
E'"WLICDLLP'DMQWF Export Paint rendering options
----- General)
-Rendering Altitude Mode
-Building damp to ground -
- WWaterBody
-LandUse @® Cross
----- Vegetation Thickness =
----- Transportation
- Relief Color
""CltYFu_m@rE) Highlight when onMouseOver
[=-GenericCityObject
+Surface and Solid Highlighted thickness 3o
- CityObjectGroup Highlighted color
--Bridge () Icon
----- Tunnel
[-Balloon Color -
- AltitudeTerrain =
Scale il =
[+-Database
[+-General () Cube
Length of Side =
Fill color
Highlight when onMouseOver
Highlighted fill color
Curve rendering options
Altitude Mode
damp to ground -
Thickness 3=
Color
Highlight when onMouseOwver
Highlighted thickness =
Highlighted color
216 Peskee Default Chapjer 3. Importer-Exporter
Ready Database disconnected

3D City Database for CityGML, Release 4.1

Three setting options are available which allow user to choose a more appropriate display form for point geometry on
the 3D map:

¢ Cross: The point geometry can be spatially represented by using a cross-line in the form like “X” with the
length size of around 2 meters (hard-encoded). Changing the thickness and color settings will affect the width
of the cross-line geometry in pixels and the display color respectively. The mouseOver highlighting effect is
also supported and can be switched on and off by the user. When highlighting is enabled, further settings can be
made for the thickness and color properties of the highlighting geometry.

REE) iR A

1\ || W 'ﬁ:;‘[l earth

Fig. 3.50: An exported point geometry object displayed as a cross-line

e Icon: An alternative way for displaying point geometry in the earth browser is to use the KML’s native point
placemark that can be represented with an icon in a user-defined color. The size of the icon can be determined
with the help of the Scale option, where the default value is 1.0 (no scaling) which can give a fairly good
perception.

* Cube: Another possibility of representing the point geometry is to use a small solid particle whose central point
should be identical to the target point. Similar to the options (Cross and Icon) described above, settings options
for the size, color, and highlighting effect can also be adjusted to achieve an optimal visual effect.

The rendering settings for the export of curve geometry objects can be configured in a similar manner as those of point
geometry with the display form “Cross”.

Note: When displaying curve geometry objects in Google Earth, the altitude modes like absolute and relative may
result in the curves intersecting with or hovering over the earth ground. If the user wants to keep the curve geometry
objects always being draped on the earth ground, the altitude mode clamp to ground shall be chosen.

3.6. Preferences 217

3D City Database for CityGML, Release 4.1

|miagelsi2i] MEe sV ast

1\ .r|. W 1‘:::['. earth

Fig. 3.51: An exported point geometry object displayed as an icon

3.6.3.3 Information Balloon Preferences

KML offers the possibility of enriching its placemark elements with information bubbles, so-called balloons, which
pop up when the placemark is clicked on. This is supported by the Importer/Exporter regardless of the display form in
which the objects is exported.

Note: When exporting in the COLLADA display form it is recommended to enable the “highlighting on mouseOver”
option, since model placemarks not coming from Google Earth servers are not directly clickable, but only through the
sidebar. Highlighting geometries are, on the contrary, directly clickable wherever they are loaded from.

Note: If you want to use the 3DCityDB-Web-Map-Client (see Section 5 for more details) to visualize the exported
datasets (KML/gITF models), the options (the both checkboxes shown in Fig. 3.53) for creating information balloons
shall be deactivated, since the 3DCityDB-Web-Map-Client does not provide support for showing information balloons.
In stead, it utilizes the online spreadsheet (Google Fusion Table) to query and display attribute information of the
respective objects.

Balloon preferences can be set independently for each CityGML top-level feature type. That means every object can
have its own individual template file (so that for instance, WaterBody balloons display a different background image as
Vegetation balloons), and it is perfectly possible to have information bubbles for some object types while some others
have none. For GenericCityObject, the point and line geometry object can also has its own individual balloon settings.
The following example is set around Building balloons but it applies exactly the same for all feature classes.

The contents of the balloon can be taken from a generic attribute called Balloon_Content associated individually to

218 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

|mEgelEr2 a0l 4rieaiiest

(o "r:;'[l._' SN

Fig. 3.52: An exported point geometry object displayed as a small cube

each city object in the 3DCityDB. They can also be uniform for all objects in an export by using an external HTML file
as a template, or a combination of both: individually and uniformly set, the Balloon_Content attribute (individually)
having priority over the external HTML template file (uniform). A few Balloon HTML template files can be found
after software installation in the subfolder templates/balloons of the installation directory.

The balloons can be included in the doc.kml file generated at export, or they can be put into individual files (one for
each object) written together into a “balloon” directory. This makes later adaption work easier if some post-processing
(manual or not) is required. When balloon contents are put into a separate file for each exported object, access to local
files and personal data must be granted in Google Earth (Tools -> Options -> General) for the balloons to show.

The balloon contents do not need to be static. They can contain references to the data belonging to the city object
they relate to. These references will be dynamically resolved (i.e.: the actual value for the current object will be put
in their place) at export time in a way similar to how Active Server Pages (ASP) work. Placeholders embedded in
the HTML template, beginning with <3DCityDB> and ending with </3DCityDB> tags, will be replaced in the
resulting balloon with the dynamically determined value(s). The HTML balloon templates can also include JavaScript
code.

For all concerns, including dynamic content generation, it makes no difference whether the template is taken from the
Balloon_Content generic attribute or from an external file.

Balloon template format. As previously stated, a balloon template consists of ordinary HTML, which may or may
not contain JavaScript code and <3DC1ityDB> placeholders for object-specific content. These placeholders follow
several elementary rules.

Rules for simple expressions

» Expressions begin with <3DCityDB> and end with </3DCityDB>. Expressions are not case-sensitive.

3.6. Preferences 219

http://msdn.microsoft.com/en-us/library/ms526064.aspx

3D City Database for CityGML, Release 4.1

II.'II

Eile Project Wiew Help

T 3D City Database Importer/Exporter

[#-CityGML Import

CityGML Export
[=-KML/COLLADA alTF Export
E—----General

--F‘.endering

=HBalloon

.....

- WWaterBody
~Landlse

----- Vegetation

----- Transportation
--Relief

- ACityFurniture
[H-GenericCityOhject
- CityObjectGroup
- Bridge

----- Tunnel

- AltitudeTerrain
[+-Databaze

[+-General

Ready

Import Export KML/COLLADA/QTF Export ADE Manager SPSHG Database Preferences

Building

Placemarks must indude <description= (balloon)

Balloon content source
(") generic attribute "Balloon_Content”

Browse

i) selected file only when no generic attribute avaiable

Export balloon contents into a separate file for each object

(must allow access to local files in Google Earth)

Restore Default Apply

Database disconnected

Fig. 3.53: Building Balloon settings

220

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

» Expressions are coded in the form "TABLE/ [AGGREGATION FUNCTION] COLUMN [CONDITION]".
Aggregation function and condition are optional. When present they must be written in square brackets (they
belong to the syntax). These expressions represent an alternative coding of a SQL select statement: SELECT
[AGGREGATION FUNCTION] COLUMN FROM TABLE [WHERE condition]. Tables refer to the un-
derlying 3DCityDB table structure (see Section 2.7.2 for details).

» Each expression will only return those entries relevant to the city object being currently exported. That means
an implicit condition clause somewhat like "TABLE.CITYOBJECT_ID = CITYOBJECT.ID" is always
considered and does not need to be explicitly written.

¢ Results will be interpreted and printed in HTML as lists separated by commas. Lists with only one element
are the most likely, but not exclusively possible, outcome. When only interested in the first result of a list the
aggregation function FIRST should be used. Other possible aggregation functions are LAST, MAX, MIN, AVG,
SUM and COUNT.

» Conditions can be defined by a simple number (meaning which element from the result list must be taken) or a
column name (that must exist in underlying 3DCityDB table structure) a comparison operator and a value. For
instance: [2] or [NAME = 'abc'].

¢ Invalid results will be silently discarded. Valid results will be delivered exactly as stored in the 3DCityDB tables.
Later changes on the returned results - like substring() functions - can be achieved by using JavaScript.

¢ All elements in the result list are always of the same type (the type of the corresponding table column in the
underlying 3DCityDB). If different result types must be placed next to each other, then different <3DCityDB>
expressions must be placed next to each other.

Special keywords in simple expressions

e The balloon template files have several additional placeholders for object-specific content, called
SPECIAL_KEYWORDS. They refer to data that is not retrieved “as is” in a single step from a table in the
3DCityDB but has to undergo some processing steps (not achievable by simple JavaScript means) in order to
calculate the final value before being exported to the balloon. A typical processing step is the transformation of
some coordinate list into a CRS different from the one the 3DCityDB is originally set in. The coordinates in
the new CRS cannot be included in the balloon with their original values as read from the database (which was
the case with all other expression values so far), but must be transformed prior to their addition to the balloon
contents.

» Expressions for special keywords are not case-sensitive. Their syntax is similar to ordinary simple ex-
pressions, start and end are marked by <3DCityDB> and </3DCityDB> tags, the table name must be
SPECIAL_KEYWORDS (a non-existing table in the 3DCityDB), and the column name must be one of the fol-
lowing:

3.6. Preferences 221

3D City Database for CityGML, Release 4.1

Table 3.9: 3DCityDB SPECIAL_KEYWORDS

CENTROID_WGS84 coordinates of the object’s centroid in WGS84 in the
following order:
longitude, latitude, altitude

CENTROID_WGS84_LAT latitude of the object’s centroid in WGS84

CENTROID_WGS84_LON longitude of the object’s centroid in WGS84

BBOX_WGS84_LAT _MIN minimum latitude value of the object’s envelope in
WGS84

BBOX_WGS84_LAT_ MAX maximum latitude value of the object’s envelope in
WGS84

BBOX_WGS84_LON_MIN minimum longitude value of the object’s envelope in
WGS84

BBOX_WGS84_TLON_MAX maximum longitude value of the object’s envelope in
WGS84

BBOX_WGS84_HEIGHT_MIN maximum longitude value of the object’s envelope in
WGS84

BBOX_WGS84_HEIGHT_MAX maximum height value of the object’s envelope in
WGS84

BBOX_WGS84_LAT_LON all four latitude and longitude values of the object’s
envelope in WGS84

BBOX_WGS84_LON_LAT all four longitude and latitude values of the object’s
envelope in WGS84

» No aggregation functions or conditions are allowed for SPECIAL_KEYWORDS. If present they will be inter-
preted as part of the keyword and therefore not recognized.

222 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

e The SPECIAL_KEYWORDS list is also visible and available in its current state in the updated version of the
Spreadsheet Generator Plugin (see the following section). The list can be extended in further Importer/Exporter
releases.

Examples for simple expressions

* <3DCityDB>ADDRESS/STREET</3DCityDB> returns the content of the STREET column on the AD-
DRESS table for this city object.

e <3DCityDB>BUILDING/NAME</3DCityDB> returns the content of the NAME column on the BUILDING
table for this city object.

* <3DCityDB>CITYOBRJECT_GENERICATTRIB/ATTRNAME</3DCityDB> returns the names of all exist-
ing generic attributes for this city object. The names will be separated by commas.

* <3DCityDB>CITYOBJECT_GENERICATTRIB/REALVAL [ATTRNAME = 'H_Trauf_Min']</
3DCityDB> returns the value (of the REALVAL column) of the generic attribute with attribute name
H_Trauf_Min for this city object.

* <3DCityDB>APPEARANCE/ [COUNT] THEME</3DCityDB> returns the number of appearance themes for
this city object.

e <3DCityDB>APPEARANCE/THEME [0] </3DCityDB> returns the first appearance for this city object.

* <3DCityDB>SPECIAL_KEYWORDS/CENTROID_WGS84_LON</3DCityDB> returns the longitude value
of this city object’s centroid longitude in WGS84.

e <3DCityDB> simple expressions can be used not only for generating text in the balloons, but any valid HTML
content, like clickable hyperlinks:

* <a href="<3DCityDB>EXTERNAL_REFERENCE/URI</3DCityDB>"> click here for more
information returns a hyperlink to the object’s external reference

or embedded images:

<img src= "<3DCityDB>CITYOBJECT_GENERICATTRIB/URIVAL[ATTRNAME='TIllustration']</
—3DCityDB>" width=400>

This last example produces, for instance, in the case of the Pergamon Museum in Berlin:

<img src="http://upload.wikimedia.org/wikipedia/commons/d/dl/FrisoaltarPergamo. jpg"
—width=400>

Simple expressions are sufficient for most use cases, when only a single value or a list of values from a single column
is needed. However, sometimes the user will need to access more than one column at the same time with an unknown
amount of results. For these situations (listing of all generic attributes along with their values is one of them) iterative
expressions were conceived.

Rules for iterative expressions

¢ [terative expressions will adopt the form:

<3DCityDB>FOREACH

TABLE/COLUMN [, COLUMN] [, COLUMN] [...] [, COLUMN] [CONDITION]
</3DCityDB>
[...]

3.6. Preferences 223

3D City Database for CityGML, Release 4.1

BLDG_00030000001829f9

Pergamon Museum

Address:
Bodestr. 1
10178, Berlin

Fig. 3.54: Dynamically generated balloon containing an embedded image (image taken from Wikimedia)

224 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

HTML and JavaScript code (column content will be referred to as %1, %2, etc. and follow the columns order
in the FOREACH line. %0 is reserved for displaying the current row number)

[...]
<3DCityDB>END FOREACH</3DCityDB>

» No aggregation functions are allowed for iterative expressions. The amount of columns is free, but they must
belong to the same table. Condition is optional. Implicit condition (data must be related to the current city
object) applies as for simple expressions.

* FOREACH means truly “for each”. No skipping is possible. If skipping at display time is needed it must be
achieved by JavaScript means.

* The generated HTML will have as many repetitions of the HTML code between the FOREACH and END
FOREACH tags as lines the query result has.

* No inclusion of simple expressions or SPECIAL_KEYWORDS between FOREACH and END FOREACH tags is
allowed.

* No nesting of FOREACH statements is allowed.

Examples for iterative expressions

Listing of generic attributes and their values:

<script type="text/javascript">
function ga_value_as_tooltip(attrname, datatype, strval, intwval, realval) {
document .write ("<span title=\"");
switch (datatype) {

case "1": document.write(strval);
break;

case "2": document.write (intval);
break;

case "3": document.write (realval);
break;

default: document.write ("unknown");
bi
document .write ("\">" + attrname + "");
}
<3DCityDB>FOREACH
CITYOBJECT_GENERICATTRIB/ATTRNAME, DATATYPE, STRVAL, INTVAL, REALVAL</
—3DCityDB>
ga_value_as_tooltip("%1", "$2", "&3", "&4", "§5");
<3DCityDB>END FOREACH</3DCityDB>
</script>

3.6.3.4 Altitude/Terrain Preferences

In order to ensure a perfect display of the exported datasets in the Earth browser, some adjustments on the z coordinate
for the exported 3D objects may be necessary.

Use original z-Coordinates without transformation

Depending on the spatial database used, the transformation of the original coordinates to WGS84 will include trans-
formation of the z-coordinates (PostGIS starting from version 2.0 or Oracle starting from version 11g) or not (Oracle

3.6. Preferences 225

3D City Database for CityGML, Release 4.1

BLDG_0003000b006907e8

. ___|
Address:

Rochstr. 9

Berlin

Available in: LoD2

Appearances: 1

Measured height: 78.05785 m

Existing generic attributes (mouseOver for values): ANZ_LOC,
EIG_KL_PV, EIG_KL_ST, FOLIE, GE_LoD2_zOffset, GMDE,
H_First_Max, H_First_Min, HNR, H_Trauf_Max, H_Trauf_Min, Kachel,
KREIS, LAND, LFD, OAR, RBEZ, STR, Tex\Version

External reference name: 0003000b006907e8

a " W

y
¢
»’

-
.-
-

LY -
\\\\
A Y
AN

A AL LR LN
\\\\\\‘-. .

-
.

A
-
AR
W\

AL AR Y
\\\\\\\\
AR AR S

WA

20

Fig. 3.55: Model placemark with dynamic balloon contents showing the list of generic attributes

226 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

": 3D City Database Importer/Exporter

Eile Project Wiew Help

[#-CityGML Import

CityGML Export

[=-KML/COLLADA alTF Export
E—----General

--F‘.endering

=HBalloon

- Building

- WWaterBody

~Landlse

----- Vegetation

----- Transportation

--Relief

- ACityFurniture

[H-GenericCityOhject

- CityObjectGroup

- Bridge

----- Tunnel

[+-Databaze

[+-General

Ready

Import Export KML/COLLADA/QTF Export ADE Manager SPSHG Database Preferences

AltitudeTerrain

Use original z-Coordinates without transformation

Altitude mode

absolute -

Altitude offset
() Mo offset

() Constant {in m) 100.0

(® Move each object to bottom height
() Use generic attribute "GE_LoDn_zOffset”

Call the Google Elevation APT when no data is available
To use the Bevation AP enter an APT key in the general preferences

Restore Default Apply

Database disconnected

Fig. 3.56: Altitude/Terrain settings

3.6. Preferences

227

3D City Database for CityGML, Release 4.1

10g). To make sure only the planimetric (x,y) and not the z-coordinates are transformed this checkbox must be se-
lected. This is useful when the used terrain model is different from Google Earth’s and the z-coordinates are known to
fit perfectly in that terrain model.

Another positive side-effect of this option is that GE_LoDn_zOffset attribute values (explained in the following section)
calculated for Oracle 10g keep being valid when imported into PostGIS starting from version 2.0 or Oracle starting
from version 11g. Otherwise, when switching database versions and not making use of this option, GE_LoDn_zOlffset
values must be recalculated again.

GE_LoDn_zOffset attribute values calculated for Oracle 10g are consistent for all KML/COLLADA/gITF exports
from Oracle 10g. The same applies to PostGIS starting from version 2.0 or Oracle starting from version 11g. Only
cross-usage (calculation in one version, export from the other) creates inconsistencies that can be solved by turning
z-coordinate transformation off.

This setting affects the resulting GE_LoDn_zOffset if used when a cityobject has none such value yet and is exported
in KML/COLLADA for the first time, so it is recommended to remember its status (z-coordinate transformation on or
off) for all future exports.

Altitude mode

Allows the user to choose between relative (to the ground), interpreting the altitude as a value in meters above the
terrain, or absolute, interpreting the altitude as an absolute height value in meters according to the vertical reference
system used by the Earth browser (e.g., Google Earth uses the EGM96 geoid, whereas Cesium uses the WGS84
ellipsoid), or clamp to ground, which allows the exported objects to be always clamped to ground.

This means, when relative altitude mode is chosen, the z-coordinates of the exports represent the vertical distance from
the digital terrain model (DTM) of the Earth browser, which should be 0 for those points on the ground (the building’s
footprint) and higher for the rest (roof surfaces, for instance). However, z-coordinate values of the city objects stored
in a 3DCityDB usually have values bigger than 0, so choosing this altitude mode will often result in exports hovering
over the ground.

ceds00gle

Fig. 3.57: Possible export result with relative altitude mode

When absolute altitude mode is chosen, the z-coordinates of the exports represent the vertical distance from the
vertical datum - the ellipsoid or geoid which most closely approximates the Earth curvature, regardless of the DTM
at that point. This implies, choosing this altitude mode may result in buildings sinking into the ground wherever the
DTM indicates there is a hill or hovering over the ground wherever the DTM indicates a dent.

When the clamp to ground altitude mode is chosen, the z-coordinate values of the exported objects will be ignored
and every surface geometry of the KML models will be forced to lie on the surface of the ground.

228 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

For a proper grounding, the Altitude offset setting can additionally be used so that a positive or negative offset value
can be applied to all z-coordinates of the exports, moving the city objects up and down along the z-axis until they
match the ground.

Note: Both Altitude mode and Altitude offset settings will only take effect when the city objects are exported
in the Geometry or COLLADA/gITF display forms. When, for example, the Footprint display form is selected, The
KML/COLLADA/gITF-Exporter will internally use the clamp to ground altitude mode to ensure that the exported
geometries will be always clamped to ground regardless of the altitude mode chosen by the user. Likewise, when
exporting in the Extruded display form, the relative altitude model will be internally applied and the height value of
the respective city object will be used to represent the relative height above the ground.

Altitude offset

A value, positive or negative, can be added to the z coordinates of all geometries in one export in order to place them
higher or lower over the earth surface. This offset can be 0 for all exported objects (no offset), it can be constant for
all (constant), or it can have an individual value for each object to ensure that the bottom of the object is placed on the
earth surface.

The first option no offset implies that the z-coordinates of all geometries are kept unchanged at export time if the option
Use original z-Coordinates without transformation is selected. The second option constant is particularly appropriate
for exports of a single city object, allowing some fine-tuning of its position along the z-axis.

When exporting regions - via bounding box settings -, the other two options, Move each object to bottom height 0 and
Use generic attribute “GE_LoDn_zOffset”, are recommended.

Once the option Move each object to bottom height 0 is selected, the elevation value of the lowest point for every
object will be calculated and its inversed value should exactly equal to the zOffset value of the respective object. This
zOffset value will be used for adjusting the z- coordinates of the object to ensure that its lowest point has a height of 0
meter. This setting is particularly advisable, since combined with the relative altitude mode the exported objects can
always be properly placed on the ground in Google Earth regardless of whether its terrain layer is activated or not.
However, if the absolute altitude is chosen, a proper grounding of the objects requires that the terrain layer in Google
Earth must be deactivated.

Note: Regardless of the chosen altitude mode, the Cesium-based 3DCityDB-Web-Map-Client always interprets the
altitude as an absolute height value in meters according to the WGS84 ellipsoid reference system. Thus, the option
Move each object to bottom height 0 can only ensure a proper grounding of the objects on the Cesium Virtual Globe
when its WGS84 ellipsoid terrain model (default) is activated.

When choosing the absolute altitude model and displaying city objects on Google Earth with enabled terrain layer,
the option Use generic attribute “GE_LoDn_zOffset” shall be selected. Here the GE_LoDn_zOffset generic at-
tribute value can be automatically calculated by the Importer/Exporter if not available. This calculation uses
data returned by Google’s Elevation API. After completing the calculation, the results will be stored in the
CITYOBJECT_GENERICATTRIB table of the 3DCityDB for future use.

Note: Starting from July 2018, an Elevation API key is required in order to enable access to the Google Elevation
Service. Thus, the option Call the Google Elevation API when no data is available should only be enabled when
a valid Elevation API key is available. Users can provide their own Elevation API key in the general preferences
as described in Section 3.6.5.4. For more details on the Google Maps Platform Terms of Service, please refer to
https://cloud.google.com/maps-platform/terms/.

3.6. Preferences 229

https://developers.google.com/maps/documentation/elevation/
https://cloud.google.com/maps-platform/terms/

3D City Database for CityGML, Release 4.1

Since city objects may have different geometries for different LoDs, the anchoring points and their elevation values
may also differ for each LoD. This explains the need for having GE_LoD1_zOffset, GE_LoD2_zOffset, etc. generic
attributes for one single object.

The algorithm used to calculate the individual zOffset for an object iterates over the points with the lowest z-coordinate
in the object, calling Google’s elevation API in order to get their elevation. The point with the lowest elevation value
will be chosen for anchoring the object to the ground. The zOffset value results from subtracting the point’s z-
coordinate from the point’s elevation value.

When calling Google’s elevation API for calculating the zOffset of an object a message is shown: “Getting zOffset
from Google’s elevation service for BLDG_0003000e008c4dc4”.

Saving the building’s height offset in the form of a generic attribute ensures this information will be present in every
export in CityGML format (and therefore at every re-import) and can thus be transported across databases. Please note,
that not the DTM height value of Google Earth will be stored but the difference of the individual building’s minimum
z value and the value reported by the Google Elevation Service. Following this approach further usage restrictions of
the Google Elevation Service are avoided.

In some unusual cases, even after automatic calculation of the GE_LoDn_zOffset value the object may still not be
perfectly grounded to the Earth surface for a number of reasons; e.g. wrong height data of the model, or low resolution
of the DTM at that area. In those cases a manual adjustment of the value in the 3DCityDB is needed. After the content
of GE_LoDn_zOffset has been fine-tuned to a proper value it should be persistently stored in the database.

oogle

Fig. 3.58: Points sent to Google’s Elevation API for calculation of the zOffset

3.6.3.5 General setting recommendations

Depending on the quality and complexity of the 3DCityDB data, export results may vary greatly in aesthetic and load-
ing performance. Experimenting will be required in most cases for a fine-tuning of the export parameters. However,
some rules apply for almost all cases:

» kmz format use is recommended when the files will be accessed over a network and the selected display form is
Footprint, Extruded, or Geometry. In case of glTF-export, only kml format is allowed.

* Visibility values for the different display forms should be increased in steps of around one third of the tile side
length.

* Visibility from O pixels (always visible) should be avoided, especially for large or complex exports, because
otherwise the Earth browser will immediately load all data at once since it all must be visible.

230 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

1 AeroWest
RigitalGlobe
fil.GeoContent

—

Google
=

Fig. 3.59: Export with absolute altitude mode and no offset

3.6. Preferences 231

3D City Database for CityGML, Release 4.1

JGoogle

Fig. 3.60: Export with absolute altitude mode and use of GE_LoDn_zOffset

Tile side length (whether tiling is automatic or manual) should be chosen so that the resulting tile files are smaller
than 10MB. When single files are bigger than that Google Earth gets unresponsive. For densely urbanized areas,
where many placemarks are crimped together a tile side length value between 50 and 100m should be used.

When not exporting in the COLLADA/gITF display form, files will seldom reach this 10MB size, but Earth
browser will also become unresponsive if the file loaded contains a lot of polygons, so do not use too large tiles
for footprint, extruded or geometry exports even if the resulting files are comparatively small.

Do not choose too small tile sizes, many of them may become visible at the same time and render the tiling
advantage useless.

Using texture atlas generation when producing COLLADA/gITF display form exports always results in faster
model loading times.

From all texture atlas generating algorithms, BASIC is the fastest (shortest generation time), TPIM the most
efficient (highest used area/total atlas size ratio).

Texture images can often be scaled down to 0.2 - 0.5 without noticeable quality loss. This depends, of course,
on the quality of the original textures.

Highlighting puts the same polygons twice in the resulting export files, one for the buildings themselves, one for
their highlighting. This has a negative impact on the viewing performance. The more complex the buildings are
the worse the impact. When highlighting is enabled for exports based on a CityGML LoD3 or higher Google
Earth may become quite slow.

If you want to use the 3DCityDB-Web-Map-Client to visualize the exported datasets, options for creating high-
lighting geometries should not be chosen, since the highlighting functionality is already well-supported by the
3DCityDB-Web-Map-Client which requires no extra highlighting geometries.

The 3DCityDB-Web-Map-Client allows for on-the-fly activating and deactivating shadow visualization of 3D
objects exported in the gITF format. However, this functionality is currently not available when viewing KML
models exported in the Footprint, Extruded, and Geometry display forms.

Balloon generation is slightly more efficient when a single template file is applied for all exported objects.

When exporting in the Footprint or Extruded display forms, the altitude/terrain settings will be silently ignored
by the KML/COLLADA/gITF-Exporter which will instead internally applies the appropriate altitude models
to the exported objects to ensure that they will be properly placed on the ground in Earth browsers. However,

232

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

when exporting in the Geometry or COLLADA/gITF display forms, the altitude/terrain settings must be properly
adapted regarding the Earth browsers to be used.

* In most cases, the combination of the relative altitude mode with the Move each object to bottom height 0 altitude
offset allows for a proper grounding and displaying of the objects in Earth browsers. However, when using the
Cesium-based 3DCityDB-Web-Map-Client, its default WGS84 ellipsoid terrain model must be activated.

* When using the absolute z-coordinates and displaying the exported datasets together with terrain layer in Google
Earth, you need to choose the following combination of settings, should you have a valid Goole Elevation API
key: absolute altitude mode, generic attribute “GE_LoDn_zOffset”, and call Google’s elevation API when no
data is available.

3.6.4 Management of user-defined coordinate reference systems

When setting up an instance of the 3D City Database, a coordinate reference system (CRS) must be chosen for the
entire database (cf. Section 1.3). This CRS is used as default reference system for all spatial objects that are created
and stored in the database instance (expect implicit geometries) as well as for building spatial indexes and performing
spatial functions.

At many places, the Importer/Exporter allows for providing coordinate values associated with a different CRS though,
e.g. when defining spatial bounding box filters for CityGML imports and exports and KML/COLLADA/gITF exports,
or when defining a rarget CRS into which coordinate values shall be converted during CityGML exports (see the doc-
umentation of the corresponding operations). To add and manage additional reference systems, the Importer/Exporter
provides a corresponding dialog on the Preferences (Reference systems subnode of the Database preferences node) tab
as shown below.

On top of the preferences page [1], a drop-down list allows for choosing a CRS for display and editing from the list of
user-defined CRSs. This list contains at minimum one predefined entry called Same as in database which represents
the internal CRS of the 3D City Database instance. This entry will always show the SRID and CRS URN encoding of
the currently connected database instance. Since the internal CRS shall not be changed after database setup using the
Importer/Exporter, the fields of the Same as in database entry cannot be edited.

A new user-defined CRS can be added to this list after clicking the New button. Please provide the database-internal
SRID in the corresponding SRID input field of the user dialog and enter the URN encoding of the CRS into the
gml:srsName input field (optional). This field also provides a drop-down list of commonly used encoding schemes
which can be used as template (such as the OGC encoding scheme). A short, meaningful textual description of the
CRS must be provided in the Description field. This description is used as value for the drop-down on top of the
dialog, but also for similar CRS drop-down lists on further tabs of the Importer/Exporter. The new CRS is added to
the list of user-defined CRSs upon clicking the Apply button. The following screenshot provides an example.

The Copy button allows for adding a further CRS by copying and editing the information of an already existing user-
defined CRS. The currently selected CRS is deleted from the list by clicking the Delete button. The Check button
next to the SRID input field facilitates to verify whether the provided SRID is supported by the currently connected
3D City Database instance. After a successful check, the non-editable fields Database name and SRS type will be
filled with the corresponding information collected from the currently connected 3D City Database instance. If the
Importer/Exporter is not connected to a database instance, the Check button is disabled.

The result of the SRID verification may vary between different 3D City Database instances since 1) the list of prede-
fined spatial reference systems differs between different database systems and versions and 2) both Oracle and Post-
greSQL/PostGIS support the definition of user-defined spatial reference systems on the database side (please check
the respective database documentation for guidance).

Note: In order to add a user-defined CRS to the Importer/Exporter that is not supported by the underlying Oracle or
PostgreSQL/PostGIS database, you need to first register this CRS in your database. As soon as the CRS is available
from the database, it can be added to the list of user-defined CRSs in the Importer/Exporter.

3.6. Preferences 233

3D City Database for CityGML, Release 4.1

u 3D City Database Importer/Exporter - O X
File Project View Help
Import Export KML/COLLADA/GITE Export Database Preferences
[#-CityGML Import Reference systems
()-CityGML Export
- KML/COLLADA/gITF Expart User-defined reference systems
FJDatabase Reference system [Default] WGS 84 v
[-General
SRID 4326 Check
gml;srshame ‘un:ogc:def:c’s:EPSG::4326| v
Description |[Default] WGS 84 |
Database name |n_."a |
SRS type |n_.‘a
Apply | ‘ New Copy Delete
Import/export of user-defined reference systems
Hename B B
Add | | Replace with Save
| Restore Default Apply
'Readv ' |Database disconnected

Fig. 3.61: Database preferences — Reference systems.

234

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

[3D City Database Importer/Exporter : citydb — O X
File Project View Help
Import Export KML/COLLADA/QITF Export Database Preferences
[#-CityGML Impart Reference systems
[+-CityGML Export
EH-KML/COLLADA/gITF Export User-defined reference systems
@--D?tal:uase Reference system |DHDM [3-degree Gauss-Kruger zone 2 f DHHNS2 v
[+-General
SRID 31466 Chedk
aml:srsMame urn:ogc:deficrs:EPSG:: 31466 e
Description DHOM f 3-degree Gauss+ruger zone 2 / DHHMSZ
Database name |DHDOM [3-degree Gauss-Kruger zone 2
SRS type Projected
Apply Mew Copy Delete
Importfexport of user-defined reference systems
Filename
Browse
Add Replace with Save
Restore Default Apply
Ready PostgreSQL PostGIS database connected

Fig. 3.62: Adding a new CRS to the list of user-defined CRSs.

3.6. Preferences 235

3D City Database for CityGML, Release 4.1

The list of user-defined CRSs is automatically stored in the config file of the Importer/Exporter and loaded upon
application start. It can additionally be exported into an extra file (see [2] in Figure 116). This allows for easily
sharing user-defined CRSs between different installations of the Importer/Exporter. Please provide a valid filename
in the corresponding input field Filename (use the Browse button to open a file selection dialog) and click on Save.
There are two more options for importing such an external list of CRSs: 1) the CRSs listed in the external file can be
added to the current list of CRSs (Add button) or 2) the external list can be used to replace the current list (Replace
with button).

The Importer/Exporter is shipped with a number of predefined CRSs organized in subfolders below tem-
plates/CoordinateReferenceSystems in the installation folder. Each CRS definition is stored in its own file and, thus,
can be easily imported and added to the list of user-defined CRSs. Note that the URN encoding of the predefined
CRSs generally lacks a height reference system. The height reference therefore must be added before using this CRS
as target reference system for CityGML exports (cf. Section 3.4 for more details).

3.6.5 General preferences

In addition to the preference settings that influence the behavior of a particular import or export operation (cf. previous
sections), the General node on the Preferences tab offers application-wide settings.

3.6.5.1 Cache

Both during CityGML imports at exports, the Importer/Exporter has to keep track of various temporary information.
For instance, when resolving XLinks, the gml:id values as well as additional information about the related features and
geometries must be available. Since the Importer/Exporter is designed to be able to process arbitrarily large CityGML
input files, keeping this information in main memory only is not a promising strategy. For this reason, the information
is written to femporary tables in the database as soon as user-defined memory limits are reached.

Per default, temporary tables are created in the 3D City Database instance itself. The tables are populated during the
import and export operation and are automatically dropped after the operation has finished. Alternatively, the user can
choose to store the temporary information in the local file system instead. An absolute path where to create the file-
based storage has to be provided. Either type the location manually into the input field or use the Browse button to open
a file selection dialog. A subfolder of the local ftemp folder of the operating system user running the Importer/Exporter
is proposed as default location (depends on the operating system in use). Like with temporary database tables, the
file-based storage is automatically removed after the operation has finished.

Some reasons for using a file-based storage are:
» The 3D City Database instance is kept clean from any additional (temporary) table.

e If the Importer/Exporter runs on a different machine than the 3D City Database instance, sending temporary
information over the network might be slow. In such cases, using a local storage might help to increase perfor-
mance.

3.6.5.2 Import and export path

This preference dialog allows for setting a default path for import and export operations.

Simply choose between the last used import/export path (default) or browse for a specific folder in your local file
system. The selected folder will then be used as default path in all dialogs that require an input/output file.

3.6.5.3 Network proxies

Some of the functionalities offered by the Importer/Exporter require internet access. This applies, for instance, to
the XML validation when accessing XML Schema documents on the web, to the map window for the graphical

236 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

i 3D City Database Importer/Exporter - 4 X

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

~CityGML Import Cache
~CityGML Export

*KML/COLLADA/gITF Export Storage of temporary information during CityGML import/export
~Database

Use database
~General @

(O Use local file system

- Import and export path
E—----Network proxies

~API Keys

~-Logging

i----Language selection

B8 e Oy O g OO

C:\Users\cnagel\AppData\Local\Temp\3dcitydb Browse

Restore Default Apply

Ready Database disconnected

Fig. 3.63: General preferences — Cache.

selection of bounding boxes (uses OpenStreetMap data), or to the automated calculation of height offsets during
KML/COLLADA/gITF exports (based on the Google Elevation Service).

Most computers in corporate environments have no direct internet access but must use a proxy server. The preference
dialog shown below let you configure network proxies.

The Importer/Exporter supports Web (HTTP), Secure web (HTTPS) and SOCKS proxies. Usually, configuring a Web
proxy (HTTP) is enough for most tasks, like those mentioned above. However, more sophisticated use cases, like
uploading cloud documents via an Importer/Exporter extension plugin (cf. Section 3.9.2) may require Secure web
proxy (HTTPS) support. SOCKS proxy support should currently only be needed when the Importer/Exporter and the
database system running the 3D City Database reside in different networks.

Whenever one of the protocols to be handled by a proxy is selected in the choice list at the top of the dialog, the
corresponding settings must be provided in the fields below: Server, Port, and if the proxy requires login credentials
Username and Password. Default Port values for each protocol are automatically filled in (HTTP: 80; HTTPS: 443;
SOCKS: 1080) and only need to be changed if required.

It is also possible to define one single proxy for all protocols by simply selecting the corresponding checkbox under
the protocol list. Just make sure the proxy server supports all protocols and that they can all be routed through the
given Port.

Proxies are only used if the checkbox next to the protocol type is enabled. Otherwise, the proxy configuration will
be stored but remains inactive. When the proxy for a given protocol is enabled, every outgoing connection by the
Importer/Exporter that uses the protocol will be routed through this proxy.

In case the computer running the Importer/Exporter is directly connected to the internet no proxies need to be config-
ured.

3.6. Preferences 237

3D City Database for CityGML, Release 4.1

4l 3D City Database Importer/Exporter — d X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

[+~ CityGML Import Import and export path

-- CityGML Export

[+ KML/COLLADA/gITF Export Tt R P

[+- Database .

o General ® Use last import path
i--Cache (O Use standard import path
import and export path Browse
~~Network proxies
i-API Keys
?-----Logging Path for file export
“~Language selection (® Use last export path

(O Use standard export path
Browse
Restore Default Apply
Ready Database disconnected
Fig. 3.64: General preferences — Import and export path.
238

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

4l 3D City Database Importer/Exporter - O X
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

[+]- CityGML Import Network proxies
'+ CityGML Export

[+~ KML/COLLADA/gITF Export
-- Database

E-General Il \eb proxy (HTTP)

;—----Cache |:| Secure web proxy (HTTPS)
i--Import and export path

SOCKS proxy
=

Select a protocol to configure:

API Keys |:| Use selected proxy server for all protocols
#-Logging
“-Language selection ~Web proxy (HTTP)

Server

Port 80

[] Proxy server requires login credentials
Username

Password

Save password

Restore Default Apply

Ready Database disconnected

Fig. 3.65: General preferences — Network proxies.

3.6. Preferences 239

3D City Database for CityGML, Release 4.1

3.6.5.4 API Keys

The Importer/Exporter uses external web services offered by third party providers for different tasks and functionali-
ties. Some of these services are open and free to use, whereas others are more restrictive and require passing an API
key to use the service. In the API Keys preference dialog, you can provide your API keys for different services.

i 3D City Database Importer/Exporter - O X

File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences

[+]- CityGML Import API Keys
i+ CityGML Export
+-KML/COLLADA/gITF Export
E\ Database
- General
E—----Cache Maps Elevation API
;-----Impor't and export path
E-----Network proxies
?-----Logging
“-Language selection

Google Maps APIs
Geocoding API

Restore Default Apply

Ready Database disconnected

Fig. 3.66: General preferences — API keys.

The Google Maps API services can be used by the Importer/Exporter for two different tasks: 1) the Geocoding API
is used for geocoding addresses and address lookups in the map window (cf. Section 3.7), and 2) the Maps Elevation
API is used in KML/COLLADA exports for retrieving height values from the Google Earth terrain model (cf. Section
3.6.3.4). If you want to use one of these services, then you must enter the corresponding API key in the above dialog.
Otherwise the services will respond with an error message that will be displayed by the Importer/Exporter. Please visit
the Google Maps API website if you do not have an API key yet but intent to get one.

Note: Google has changed the usage and pricing policies for the above-mentioned services starting from July 16,
2018. Thus, in previous versions of the Importer/Exporter, the services could be used without entering an API key.

3.6.5.5 Logging

The Importer/Exporter logs information about events such as activities or failures, for instance during database imports
and exports. Each log entry consists of a timestamp when the event occurred, a log level indicating the severity of
the event and a human-readable message text. Log messages are always printed to the console window and may
additionally be forwarded to a log file on your local computer. The Logging preference dialog is shown below.

The following four log levels are distinguished (from highest to lowest severity):

240 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

u 3D City Database Importer/Exporter - O X
File Project View Help
Import Export KML/COLLADA/gITF Export Database Preferences
+- CityGML Import Legging
+- CityGML Export
-+ KML/COLLADA/gITF Export — Cansale
+|- Database Log level |INFO
-I-General
~-Cache [[] Word wrapping
-~ Impert and export path
~Network proxies Color scheme
~~API Keys
waRN e
~Language selection INFO D Background
DEBUG
[11:20:08 ERROR] This a ERROR log message.
[11:20:08 WAEM] This a WARN log message
[11:20:08 INFO] This a INFO log message.
[11:20:08 DEBUG] This a DEBUG log message.
Log file
[] Write log messages to log file
Log level [INFO
Use alternative path for log files
‘ | Browse
Restore Default Apply
Ready | Database disconnected

Fig. 3.67: General preferences — Logging.

3.6. Preferences 241

3D City Database for CityGML, Release 4.1

* ERROR: An error has occurred (usually an exception). This comprises internal and unexpected failures. More-
over, invalid XML content of CityGML instance documents is reported via this log level. Fatal errors will cause
the running operation to abort.

* WARN: An unusual condition has been detected. The operation in progress continues to work but the user
should check the warning and take appropriate actions.

¢ INFO: An interesting piece of information about the current operation that helps to give context to the log, often
when processes are starting or stopping.

* DEBUG: Additional messages reporting the internal state of the application.

The log level for messages printed to the console window can be chosen from a drop-down list in the Console dialog
[1]. The log will include all events of the indicated severity as well as events of greater severity (default: INFO). Word
wrapping can be optionally enabled for long message texts that otherwise exceed the width of the console window. In
addition, the color scheme for console log messages can be customized by assigning text colors to each log level.

Note: The log output in the console window is truncated after 10,000 log messages in order to prevent high main
memory consumption.

If log messages shall additionally be stored in a log file, simply activate the option Write messages to log file. The log
file is named log_3dcitydb_impexp_<date>.log per default, where <date> is replaced with the current date at program
startup. The Importer/Exporter creates the log file if it does not exist. Otherwise, log messages are appended to the
existing log file. The user can choose a location where to store the log file by enabling the option Use alternative path
for log files and by providing a corresponding path [2]. Either enter the path manually or click on Browse to open a
file selection dialog. The log level can be chosen independent from the console window through the corresponding
drop-down list [2] (default: INFO).

Note: Log files are per default stored in the home directory of the operating system user running the Im-
porter/Exporter. Precisely, you will find the log files in the subfolder 3dcitydb/importer-exporter-3.0/log. However,
the location of the home directory differs for different operating systems. Using environment variables, the location
can be identified dynamically:

* %9HOMEDRIVE%%HOMEPATH%3dcitydbimporter-exporter-3.0log (Windows 7 and higher)
* $HOME/3dcitydb/importer-exporter-3.0/log (UNIX/Linux, Mac OS families)

3.6.5.6 Language selection

The Importer/Exporter GUI has support for different languages. Use the Language selection preference dialog shown
below to pick your favourite language.

Below these main nodes, further subnodes organize the preferences into separate topics. When selecting a node in the
tree view, the associated settings dialog is displayed on the right side [2]. Changes made to the settings of the selected
node are applied through the Apply button [3]. The buttons Restore and Default allow for resetting the preferences to
their previous state or to their default values.

The preferences (including the settings on the separate operation tabs) are automatically stored in the config file of
the Importer/Exporter and are restored from this file upon program start. Thus, changes made to the preferences are
remembered on restart. Via the Project menu available from the menu bar of the Importer/Exporter, the preferences
can optionally be stored in or loaded from user-defined config files (cf. Section 3.1).

242 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

a 3D City Database Importer/Exporter
File Project View Help

Import Export KML/COLLADA/gITF Export Database Preferences

-- CityGML Import Language selection
[+~ CityGML Export

" KML/COLLADA/gITF Export Select language for Graphical User Interface
[+]- Database

=~ General O Deutsch

..... Cache @ English
----- Import and export path
----- Network proxies

----- API Keys

----- Logging

----- 1 anguage selection

Restore Default Apply

Ready Database disconnected

Fig. 3.68: General preferences — Language selection.

3.6. Preferences 243

3D City Database for CityGML, Release 4.1

3.7 Map window for bounding box selections

The Importer/Exporter GUI offers a 2D map window that allows the user to display the overall bounding box calculated
from the city model content stored in each 3D City Database instance and to graphically select a bounding box filter
for data imports and exports.

There are two ways to open the map windows:

1. Choose the entry View -> Open map window from the menu bar at the top of the application window.

File Project ‘I.l’iw.-'i Help
Open map window I

Detach Console

Reset Default Perspective

2. Click the map button ®! on the bounding box dialog available on the Import, Export, KML/COLLADA/gITF
Export and Database tabs of the operations window.

/| Bounding Box

E| Reference system | Same as in database M

Xemin | Xmax

Ymin _ | Ymax

The 2D map is rendered in a separate application window shown below.

The map content is provided by the OpenStreetMap (OSM) service and is subject to the OSM usage and license terms.
Make sure your computer has internet access to load the map. This might require setting up network proxies (see
Section 3.6.5.3). Please consult your networkadministrator.

The map offers default mouse controls for panning and zooming. For convenience, a geocoding service is included in
the map window [1]. Simply type in an address or a geo location (given by geographic lat/lon coordinates separated by
a comma) and click the Go button. The map will automatically zoom to the first match. Further matches are available
from the drop-down list [1]. The geocoding service uses the free OSM Nominatim service per default. You can pick
the Goolge Geocoding API as alternative service from the drop-down list in [5]. Note that the Goolge Geocoding API
is not free but requires an API key that must be entered in the global preferences of the Importer/Exporter (cf. Section
3.6.5.4). Otherwise the service will respond with an error message. Independent of the service you choose, make sure
that you adhere to its terms of use.

To display the result of the geocoding query on Google Maps in your default internet browser, simply click the Show
in Google Maps button [6].

A list of usage hints is available at the right top of the map window [7]. Please click on the Show usage hints link to
display this list. The map controls are also described in the following.

* Select bounding box: Move the mouse while pressing the ALT key and the left mouse button to select a bounding
box. The bounding box is displayed in a light magenta color. Once the left mouse button is released, the
coordinates of the bounding box are automatically filled in the Bounding Box dialog on left of the map [3]. If

244 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

@30 City Database Importes/Exporter - hMap window

. Bounding box B K

Show Clear

@ Address lookup 4

Us popup menu for queries

4, Geocoder sarvice 1

05 Nominatim 4‘

) Show in Google B 6

@ Help

Click the Enk in the upper right comer
of the map for usage hints

[47.0401821, 9.84375]

. | Select bounding box
Holkd Alt key and left mouse buttan to select baunding bax

? Lookup address
Click right mouse button to open popup menu
Zoom injout
: Use mouse wheel
by o "+ Zoom into sel

. Hold Shift key a to select area

4 Move mop
Hold left mouse button the map

#4* Center map and zoom in
Double-click left mouse buston to center map

= Use popup menu for further actions

o Click fght mause hmmﬁﬁﬁ MEnL

& DpenStyestMap contributors

Fig. 3.69: 2D map window for bounding box selections.

3.7. Map window for bounding box selections

245

3D City Database for CityGML, Release 4.1

you have opened the map window from a bounding box filter dialog, then clicking the Apply button on the upper
right corner of the window [2] closes the map window and carries the bounding box values to the filter dialog.
In addition, the values are copied to the clipboard.

e Lookup address: Right-click on the map to bring up a context menu for the geo location at the mouse pointer.
From the context menu, choose Lookup address here. This will trigger a reverse geocoding query using the

geocoding service selected in [5]. The resulting address will be displayed on the left of the window [4]. The

icon denotes which location on the map is associated with the address, whereas the %’ icon shows where you
clicked on the map (see Fig. 3.70).

» Zoom infout: Use the mouse wheel or the context menu (right-click).

* Zoom into selected area: Move the mouse while pressing the SHIFT key and the left mouse button to select an
area. The selected area is displayed in a light grey color. Once the left mouse button is released, the map zooms
into the selected area. If the maximum zoom level is reached this action has no further effect.

* Move map: Keep the left mouse button pressed to move the map.

» Center map and zoom in: Double click the left mouse button to center the map at that position and to increase
the current zoom level by one step.

* Use popup menu for further actions: Right-click on the map to bring up a context menu offering additional
functions such as Zoom in, Zoom out, Center map here and Lookup address here (see above). The Get map
bounds function is equivalent to selecting the visible map content as bounding box. Thus, the map will be
shown in light magenta and the map bounds are transferred to the Bounding Box dialog on the left [3].

To close the map, simply click the Cancel button in the upper right corner [2].

The coordinates in the map window and of the selected bounding box are always given in WGS 84 regardless of the
coordinate reference system of the 3D City Database instance.

When opening the map window from a bounding box dialog that already contains coordinate values (e.g., from a
filter dialog on the Import, Export or KML/COLLADA/gITF Export tabs or after having calculated the entire area
of the database content on the Database tab), the map window will automatically display this bounding box. If the
coordinate values of the provided bounding box are not in WGS 84, a transformation to WGS 84 is required. Since
the Importer/Exporter uses functionality of the underlying spatial database system for coordinate transformations, a
connection to the database must have been established beforehand. In case there is no active database connection, the
following pop-up window asks the user for permission to connect to the database.

The Apply button on the upper right corner of the map window [2] is a shortcut for copying the coordinate values to
the clipboard and pasting them in the bounding box fields of the calling tab on the operations window. Furthermore,
coordinate values can now be easily copied from one tab to another by simply clicking on the copy button 2 in one of
them, say Import tab, with filled bounding box values, changing to another, say KML/COLLADA/gITF Export tab and

clicking on the E™ button there. Previously existing values in the bounding box fields of the KML/COLLADA/gITF
Export tab (if any) will be overwritten.

3.8 Using the command line interface (CLI)

In addition to the graphical user interface, the Importer/Exporter also offers a command line interface (CLI). The CLI
allows a user to run the Importer/Exporter from the command line (or a shell script) and to easily embed it in batch
processing workflows and third-party applications.

To use the CLI, you first need to start a shell environment offered by the operating system of your choice. The general
command to run the Importer/Exporter from a shell environment (or a shell script) is shown below. If required, please
replace the version number in the file name with your current version.

246 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

) 30 City Database Importer/Exparter - Map window A
52 51760515, 13.37 g - Go Apply Cancal
1 match{es) returned fram geocoder (0,677 5)
P shoe ussos hinls
. . Bounding box i . b
8 & |) Marschallbrucke ;i <¢ L L
| 1 s der
b i . '
Eriadrich. | %a"f = e i o
H' il Ebert | *%\'rmlagsmeftb‘\ Ll - | “ARD- 1 % 2
terBreling | Pl |- Hauptstadisiudio]
| 2 A -
. L H gl | Rakiert: = B
Shaw Clear Lkt Rl Aggetade] Hach- i 0 3 1] a4
|akob- | BT Forum) ALKl asrahe
Kalzer L %G DUW“"B: s W
§ Addross lockup T e Haus - f CTR ':H_aut; ¥ 3
iser- = 2 g 100 Re ~ehem; A
mlfm:usﬁm Berlin, + . e ———| g; Dmm.r\ﬂ" — Reichsministerism i 5
: !
10117, Germany = 8 ——— . des Innaren w
mannstrafle [] 104 B
= ﬂ = 2 B 2 %.
| Geocoder servles | Eeiehsia) | Jakob- I
% Bundests . 2
s g\ Kaiser- w
O5M Nominatim - > H Haus = g
Zoam in
G Shaw in Goagle Maps Zoom out
Center map here o e
© Halp e €2 Umerdenlin
Get map bounds lL Tu\:j’:u;_'__'__,_fal-‘ﬂml‘ed!,t'wﬁ'l'r
Click the link in the upper right camer n r.".:'_'__'._:_-J -""_T::L” Smeaa S
of the map for usage hinte rrande'r'\b'ul B s sl
Lookup address here 17" 0 a amng e =
= i o= 5HBrandenburger e e -
== Tt Tor ”
» ! = Hatelhdion Brangentairges 1 o
¢ b | = | * Tar Apotheke 2
L i \ \ Botschalt
v \\ -Jr*; | SR o L - der Russisthen
e - LRRl Paries Mafz_ =) ?.L G0 Fiseeraion
N By A e \ % | -
o el DE-Bank | \ & | Abgeordnetenburos
1 il ?? des Deutschen
| Britische Bundestags
=y fag
| \ Adicn rcr.-mn-rqmaqmm“ \
[F = ! T

Fig. 3.70: Address lookup in the map window.

3.8. Using the command line interface (CLI)

247

3D City Database for CityGML, Release 4.1

|

The bounding box cannot be shown in the map.
The assocated spatial reference system is not WGS 84,

Xmin { Ymin 3507145.6412 [5401975, 2604
Xmax [Ymax 3520086.4 [5413276.87

i Description Same as in database
SRID nfa
The coordinate values have to be transformed to WGES 84.
| Nofe: A connection to the database will be established.

The database has to support the given SRID.

Transform | | Skip | | Close map

Fig. 3.71: Asking for permission before connecting to a database for coordinate transformation.

248 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

java -jar lib/impexp-client-4.1.0.jar [-options]

This command consists of two parts. The first part executes the Java Virtual Machine (JVM) through the java com-
mand. The -jar argument of the JVM is used to denote the path to the Importer/Exporter JAR file impexp-client-
4.1.0.jar to be executed. After the JAR filename, you must provide additional program arguments to trigger a specific
operation of the Importer/Exporter.

Note: The above command assumes that you have first changed directory to the directory where the Importer/Exporter
is installed. Otherwise, you must provide the full path to the impexp-client-4.1.0.jar file.

You may add any further JVM arguments to the above command that you think are required in your environment. /¢
is recommended to at least start the JVM with a minimum amount of main memory using the —Xms argument. For
instance, use java —-Xms 1g touse 1 GB of your main memory for the Importer/Exporter.

To get a list of program arguments offered by the Importer/Exporter, use the -help flag and issue the following com-
mand:

java -Jjar lib/impexp-client-4.1.0.jar -help

This will produce an output like shown below.
The available program arguments are:

* -shell: This argument is mandatory to start the shell version of the Importer/Exporter. If this argument is not
provided, then the GUI version is launched per default.

* -config: Provides the path and filename of the config file to be used. If this argument is omitted, the config file
in the default path is used instead. Using environment variables, the default path can be identified dynamically
(cf. Section 3.1):

— $HOMEDRIVES%S$HOMEPATH%\3dcitydb\importer—-exporter\config (Windows 7 and
higher)

— SHOME/3dcitydb/importer—exporter/config (UNIX/Linux, Mac OS families)

e -import: Triggers a CityGML import process. Provide a list of one or more input files separated by semicolons
(;) in addition. The list may also contain folders. A folder and all its nested subfolders are recursively scanned
for CityGML input files.

* -validate: Triggers a XML Schema validation on the provided list of input files (see the import argument).
* -export: Triggers a CityGML export process. Provide the path and name of the output file.
* -kmlExport: Triggers a KML/COLLADA/gITF export process. Provide the path and name of the output file.

* -testConnection: Connects to the database using the connection details provided in the config file and exits
afterwards. Evaluate the exit code (and optionally the log messages on the console) to check whether the
connection was established successfully.

The full range of preferences and settings affecting the different import and export operations of the Importer/Exporter
are not offered as separate program arguments. Instead, it is assumed that the config file (either the default one or the
one provided through the -config argument) contains all the settings that should be used in a specific operation (e.g.,
the database connection details, filter settings for imports and exports, etc.). The config file is encoded as XML and
hence can be edited by a user manually. However, the recommended way to provide valid settings is as follows:

1. Run the Importer/Exporter with the graphical user interface (GUI).
2. Make all your settings in the GUL

3. Save your settings to a local config file via the Project Save Project As. .. dialog from the main menu bar.

3.8. Using the command line interface (CLI) 249

3D City Database for CityGML, Release 4.1

[EX Eingabeaufforderung — O X

Microsoft Windows [Version 10.0.108586]
(c) 2015 Microsoft Corporation. Alle Rechte vorbehalten.

C:\3DCityDB-Importer-Exporter>java -jar lib\impexp-client-4.08.8.jar -help
Usage: java -jar lib/impexp-client-<version>.jar [-options]
(default: to execute gui version)
or Jjava -jar lib/impexp-client-<version>.jar -shell [-command] [-options]
(to execute cli version)

where options include:
-config fileName : config file containing project settings
-export fileName : export data to this file
(shell version only)
-help (-h) : print this help message and exit (Vorgabe: true)
-import fileName[s] : a ; separated list of directories and files to import,
wildcards allowed
(shell version only)
-kmlExport fileName : export KML/COLLADA/glTF data to this file
(shell version only)
-shell : to execute in a shell environment,
without graphical user interface (Vorgabe: false)
-testConnection : test whether a database connection can be established
(Vorgabe: false)
-validate fileName[s] : a ; separated list of directories and files to
validate, wildcards allowed
(shell version only)
-version (-v) : print product version and exit (Vorgabe: false)

C:\3DCityDB-Importer-Exporter>

Fig. 3.72: Help text of the command line interface.

250 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

4. Feed this config file to the command line interface using the -config argument.

Note: You can also create a config file programmatically in Java. The JAR file impexp-config-4.1.0.jar in the
installation directory of the Importer/Exporter contains all the classes required for reading and writing a config file.
Once you have the JAR file on your classpath, use the class org.citydb.config. ConfigUtil as starting point.

3.9 Importer/Exporter plugins

3.9.1 Introduction to the plugin architecture

The Importer/Exporter offers a plugin architecture that supports the modular development and deployment of addi-
tional functionalities for interacting with the 3D City Database or external datasets. For instance, plugins may enable
loading or extracting 3D city model content using data formats other than CityGML or KML/COLLADA/gITF. Plu-
gins are self-contained extensions in that one plugin cannot extend the functionality of another plugin. Therefore,
plugins can be added separately to the Importer/Exporter without interdependencies.

A plugin may extend the GUI of the Importer/Exporter by providing its own user dialog that will be rendered in a
separate tab on the operations window. In addition, a plugin may add new entries to the main menu bar and the
preferences dialog. To remember the preference settings at program startup, a plugin can choose to serialize the
settings to the main config file or a plugin-specific config file. Please refer to the plugin documentation of your vendor
for more information.

Plugin installation is simple. Just get the plugin from your vendor and put all plugin files into the plugins subfolder of
the Importer/Exporter installation directory. To keep multiple plugins independent from each other, it is recommended
to create a separate subfolder below plugins for each plugin. When running the Importer/Exporter, the installed plugins
are automatically detected and loaded with the application.

The current version of the Importer/Exporter is shipped with two free and open-source plugins that can be installed
during the setup process (see Section 1.2). The Spreadsheet Generator Plugin allows for exporting attributes of city
objects as spreadsheets with user-defined formatting, either to a CSV or a Microsoft Excel file (see Section 3.9.2).
The ADE Manager Plugin automatically transforms CityGML ADE:s to relational schemas extending the 3DCityDB
schema and un-/registers such ADE schemas with existing 3DCityDB instances.

You can also develop your own plugins. For this purpose, the Importer/Exporter comes with a Plugin API that is
available as separate JAR file impexp-plugin-api-4.1.0.jar. Simply put the JAR file on your classpath to start plugin
development. A comprehensive Plugin API guide will be offered on the www.3dcitydb.org website soon. Moreover,
the source codes of the Spreadsheet Generator Plugin and ADE Manager Plugin can be used as templates for your
own developments.

3.9.2 Spreadsheet Generator Plugin (SPSHG)

3.9.2.1 Definition

By using the SPSHG (Spreadsheet Generator) plugin, it is possible to export data from a 3D City Database (3DCityDB)
instance into a CSV or a Microsoft Excel file. Both types of files can be opened using a spreadsheet application (like
Microsoft Excel or Open Office Calc) as well as uploaded to a web based online spreadsheet service (like Google
Docs). All features of spreadsheet programs, like calculation and graphing tools, are applicable to the exported data
from a 3D City Database instance.

3.9. Importer/Exporter plugins 251

http://www.3dcitydb.org

3D City Database for CityGML, Release 4.1

3.9.2.2 Plugin installation

The SPSHG is an additional component which can be installed together with the 3DCityDB Importer/Exporter tool.
During the Installation of the Import/Export tool, the wizard will ask you if you want to install Spreadsheet Generator
Plugin like in the following figure:

Select Installation Packages Wias
Select which application components you want to install, "EgENma-

CityGML

Step Sof 9

Select the packs you want to install:
Q Mote: Grayed packs are reguired.

e Core application files 63,69 MB
3D City Database 1,78 MB
Documentation 13,27 MB
3D Web Map Client 31,8 MB
Sample CityGML and KML/COLLADA datasets 57,95 MB
= [] Pluging 13,22 MB
[l Spreadsheet Generator Plugin 13,22 MB
. [] Plugin development APT 2,22 MB
Description

This plugin can export thematic data of the spatial objects into tables. Supported output formats are Microsoft Excel, C5V, and
Google Spreadsheets.

Total space Required: 136,7 MB
Available space: 172,04 GB

{Made with |[zPack - http:/Vizpack.crg')

| aprevious || Bonext || @oaut |

Fig. 3.73: Installation wizard of the Import/Export tool
If you haven’t checked the “Spreadsheet Generator Plugin” box during the installation process, it is also possible to
install the SPSHG later. Following simple steps will guide you through the install process:
* Download the SPSHG plugin zip file from the official website of the 3D City Database.

* Open the folder that contains your locally installed instance of the Importer/Exporter version 3.3.0 (the instal-
lation directory).

* Open the plugins subfolder. If it is not available, create a new subfolder and name it “plugins”.

* Extract the downloaded SPSHG plugin zip file in the plugins folder. As a result a new folder named spread-
sheet_Generator will be created. The spreadsheet_Generator folder will contain all required files and subfold-
ers.

* Run the Importer/Exporter. The SPSHG plugin tab should be visible like in the following figure.

252 Chapter 3. Importer-Exporter

https://www.3dcitydb.org

3D City Database for CityGML, Release 4.1

File Project View Help

Import | Export | KML/COLLADA/GITF Export] SPSHG | Database | Preferences |

Columns

Load a template file or make a new one manually

Content Source

Generate data for all
following feature dasses

« |Building, Land Use, Vegetation, Generic City Object

Versioning
Workspace Timestamp (DD.MM.YYY)

Bounding Box .
@ & Reference system ‘Same asin database
Xmin

Xmax

Ymin Ymax
Output

@ CSVFile

Separator Character(s) [Comma]

Microsoft Excel file (dsx)

Database disconnected

Fig. 3.74: The SPSHG plugin tab allowing for exporting from the 3DCityDB to a spreadsheet

3.9. Importer/Exporter plugins 253

3D City Database for CityGML, Release 4.1

3.9.2.3 User Interface

Main Parameters

The SPSHG plugin GUI is divided into three main parts. The upper part, titled Columns, refers to the columns of the
output spreadsheet file. The Content Source in the middle section refers to the rows of the output spreadsheet. Each
output row will always contain the GMLID of a city object and its corresponding selected values for each column.
A list of the feature classes of city objects (Top-level features) whose data will be exported to the spreadsheet, the
versioning information of the database and a geographic bounding box should be specified. The file path and the file
format for the exported data must be specified in the lower part. All input data fields of the SPSHG plugin tab will be
now described in more detail.

Columns

First of all, the columns of your resulting spreadsheet should be defined. You can choose to load a template file or
manually create a new one:

Load a template file: type the template file’s path directly into the text field or click on the Browse button to use an
Open dialog for selecting the template file. The selected template file can be edited by clicking on the Edit button.

Create a new template

Click on the New button to access the part for creating a template (marked in Fig. 3.75). To add a new column click
on the Add button and fill all necessary fields of the New Column dialog (cf. Fig. 3.76). A column contains a title,
content and comment. The comment field is optional. Each row in the exported data will begin with the GMLID of
the corresponding city object. It will be followed by the adapted value of each column for that city object (see next
section for more information). Created columns will be listed in the table. You can use the Remove, Edit, Up (), and
Down () buttons to modify listed columns on the table and their order. By pressing the Save button, manually created
(or adapted) templates will be saved in a text file. Path will be specified by the Save dialog.

New Column dialog

By clicking on the Add button the New Column dialog will be shown (Fig. 3.76). Using the New Column dialog, it
is possible to define a new column for the output spreadsheet. A column may contain a title, content and comment
fields. The title and content are mandatory. During export time, the content of each column will be adapted for each
city object. For each specific column:

* The content may set to be a static value, e.g. “Munich”. As a result, the value of that column in the exported
spreadsheet will be equal to the specified static value (in this example “Munich”) for all rows.

* The content of a column may be specified by an expression. The main part of an expression refers to a column
in a specific table of a 3D City Database. Each row refers to one city object. Consequently, the value of the
spreadsheet’s column will be dynamically adapted for each row at export time. It means that the value of the
spreadsheet’s column for a specific row will be equal to the value of that expression for the corresponding city
object of that row. Expressions must follow specific rules. They can be added simply by using the GUI or
written by hand.

* The content of a spreadsheet’s column may contain a combination of static values and expressions.

Rules for Column’s Content field

» Expressions are coded in the following form:

254 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

File Project View Help

| Import | Export | KML/COLLADA/GITF Expert | SPSHG | Database | Prefersnces|

Columns

Load a template fle or make a new one manually

Column's tile Calumn's content Comment

Remove

Edit

Would you lke to save the template in a file?

Content Source

Generate data forall |7 |Byilding Land Use, Vegetaticn, Generic City Object
following feature dasses

Versioning

Workspace Timestamp (DD.MM, YY)

Bounding Box

E‘ Reference system :Same as in database

xmin Xmax

Yrnin Yax

Output
@ CsvFile

Browwse

Separator Character(s) | [Comma]

Micrasoft Excel file (xsx)

Browse

Datzbase disconnected

selected

3D City Database for CityGML, Release 4.1

Column's title

Bridge_caass

Available data from database

=}y BRIDGE

- @ BRIDGE_PARENT_ID

-- @ BRIDGE_ROOT_ID

-

CLASS_CODESPACE
FUNCTION
FUNCTION_CODESPACE
USAGE

USAGE_CODESPACE
YEAR_OF_COMSTRUCTION
YEAR_OF_DEMOLITION
I5_MOVABLE
LOD1_TERRAIN_INTERSECTIO
LOD2_TERRAIN_INTERSECTIO
LOD3_TERRAIN_INTERSECTIO
LOD4_TERRAIN_INTERSECTIO
LOD2_MULTI_CURVE

LOD3_MULTI_CURVE
1 | 1]

Comment (Optional)

Column's content

BRIDGE/CLASS]

Insert Column][Cancel

Fig. 3.76: The New Column dialog. Fill the Column’s title, Column’s content fields and click on the Insert Column
button to add it to the list of columns. The Comment field is optional. When written to a template file its content serves
informational purposes only

256

Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Aggregation function and condition are optional. Table refers to the underlying 3DCityDB table structure (see
Chapter Section 2.7 for more details).

» Expressions are not case-sensitive.

* For each row of output, each expression will only return the value of those entries relevant to the city object for
that row. That means an implicit condition clause like TABLE.CITYOBJECT_ID = CITYOBJECT.ID is
always considered and does not need to be explicitly written.

* In a case that more than one entry for the corresponding city object are available, a comma separated list of
values will be returned. When only interested in the first result of a list the aggregation function FIRST should
be used. Other possible aggregation functions are LAST, MAX, MIN, AVG, SUM and COUNT.

* Conditions can be defined by a simple number (meaning which element from the result list must be taken) or a
column name (that must exist in underlying 3DCityDB table structure) a comparison operator and a value. For
instance: [12] or [NAME = 'abc'].

¢ Invalid results will be silently discarded

* Multiline content is supported. Use " [EOL] " to start a new line in the same column.

How to use the New Column dialog

Title and content of each column should be specified. On the left hand side of the New Column dialog, tables of the
3D City Database and their columns are displayed in a tree structure. Adding an expression is simple. Select a column
in a table from the left hand side tree and click on the > button. In the case that aggregation functions are needed,
select a column from the left hand side tree and click on the f{x) button then chose one of the aggregation functions.
As a result of both cases a corresponding expression will be added into the column’s content in the right hand side.

A column’s content can be several lines long. Write " [EOL] " text in the column’s content wherever a new line should
be started. You can also press the EOL button to automatically add " [EOL] " text to the content. During export time,
the " [EOL] " text will be replaced by a new line.

After filling all necessary fields click on the Insert Column button. A new column will be created and added to the
manually created template.

Examples for Column’s Content

ADDRESS/STREET
Returns the content of the STREET column on the ADDRESS table for each city object. For instance:
Strafle des 17. Juni

However ADDRESS table might contain more than one row for some city objects. In such a case a comma
separated list of values will be returned. For instance:

Strafe des 17. Juni, Straf3e des 17. Juni, Strafle des 17. Juni, Straf3e des 17. Juni
To avoid that use a proper aggregation function. For instance:
ADDRESS/[FIRSTISTREET

Although the ADDRESS table may contain several entries for a city object, result of the above expression
will be equal to the street name of first found entry.

ADDRESS/[FIRSTISTREET, ADDRESS/[FIRSTIHOUSE_NUMBER/EOL]ADDRESS/[FIRST]ZIP_CODE
ADDRESS/[FIRST]CITY

3.9. Importer/Exporter plugins 257

3D City Database for CityGML, Release 4.1

Returns the full address of each city object in two lines. For instance:
Strafle des 17. Juni, 135 10623 Berlin
CITYOBJECT_GENERICATTRIB/ATTRNAME

Returns the names of all existing generic attributes for each city object. All names will be separated by
commas.

CITYOBJECT_GENERICATTRIB/REALVAL[ATTRNAME = ‘SOLAR_SUM_INVEST’]JEUR

Returns the content of the REALVAL column of all existing generic attributes for each city object whose
ATTRNAME is equal to ‘SOLAR_SUM_INVEST’. The number will be followed by “EUR”. For in-
stance:

23000EUR

Rules for Columns’ Template file

Rules for the template file are simple. A template file contains a list of columns and their description. It may be edited
by hand or by saving a manually created template.

* A template file is a plain-text file.

» Each row of a template file may describe a column or be a comment.
¢ Comment rows MUST start with the character // ;

* A column should be specified in one of following forms:

e x[Title]l*:[+xContent]*

[Title] is the column’s title and [content] is the column’s content. In this case, [Title] is
specified by the user.

* x[Content]*

In this case, the column’s title is not specified by the user. The SPSHG plugin will internally automatically
generate a column’s title by means of the column’s content

Example for Template File

Sample template file:

// This is a template file for the export of tabular data.

// Lines starting with // or ; are comments and will be ignored.

Street : ADDRESS/ [FIRST]STREET

Houseno:ADDRESS/ [FIRST] HOUSE_NUMBER

City:ADDRESS/ [FIRST]CITY

Address:ADDRESS/ [FIRST] STREET, ADDRESS/[FIRST]HOUSE_NUMBER [EOL]ADDRESS/ [FIRST]CITY
// INVEST

Investment :CITYOBJECT _GENERICATTRIB/REALVAL[ATTRNAME = 'SOLAR_SUM_INVEST'] EUR

Fig. 3.77 shows a sample export result.

258 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Sample_Template

File Edit View Inset Format Data
= oo AL -F s %123 10pt:
fx | Strale des 17 Juni, 135
A B
1 GMLID Street

BLDG_0003000f0028da8a
BLDG_000300000008f6df

BLDG_0003000f00250727
BLDG_000300000008f309
BLDG_0003000e00a0e27c
BLDG_0003000f002507 2

BLDG_0003000a001ce4b3 Hardenbergstr.

BLDG_0003000f00093e86

BLDG_0003000f00093e88 Hardenbergstr.
" BLDG_0003000e00858128 Hardenbergstr.
b BLDG_0003000000f51d29 Hardenbergstr.
b BLDG_0003000e00858120 Hardenbergstr.

BLDG_0003000000f521db
BLDG_0003000e00206fa4 Hardenbergstr.
BLDG_0003000f00093e80

BLDG_0003000e00206fbe Hardenbergstr.

+ = Sheet1 ~

Stralle des 17. Juni

Stralle des 17. Juni

Stralle des 17. Juni

Stralle des 17. Juni

Stralle des 17. Juni

Stralle des 17. Juni

Stralle des 17. Juni

Stralle des 17. Juni

Emst-Reuter-Platz

Help

B"‘*i'm'ﬂﬂ'

cC
Houseno

City
136 Berlin
115 Berlin
118 Berlin
124 Berlin
152 Berlin
144 Berlin
36 Berlin
145 Berlin
40A Berlin
38 Berlin
36 Berlin
36A Berlin
135 Berlin

128 Berlin

s

Berlin

41 Berlin

All changes saved

[=]

S 3-Mlvy

Address

Stralle des 17.

Berlin

Stralie des 17.

Berlin

Stralle des 17.

Berlin

Stralle des 17.

Berlin

Stralle des 17.

Berlin

Stralle des 17.

Berlin

Hardenbergstr.,

Berlin

Stralle des 17.

Berlin

Hardenbergstr.,

Berlin

Hardenbergstr.,

Berlin

Hardenbergstr.,

Berlin

Hardenbergstr.,

Berlin

Stralie des 17.

Berlin

Hardenbergstr.,

Berlin

Emst-Reuter-Platz, 1

Berlin

Hardenbergstr.,

Berlin

Juni,
Juni,
Juni,
Juni,
Juni,

Juni,

Juni,

40A

Juni,

128

41

145

135

|StralRe des 17. Juni, 135

Name Surname

8 Share

Show all formulas
F
Investment

315700 EUR
0 EUR
263550 EUR
38850 EUR
444500 EUR
493850 EUR
374150 EUR
887950 EUR
107100 EUR
56700 EUR
0 EUR
399350 EUR
0 EUR
124600 EUR
233800 EUR

31150 EUR

m

Stralie des 17. Juni, 135

Fig. 3.77: Example of exported data based on sample template presented above from a 3D City Database instance

3.9. Importer/Exporter plugins

259

3D City Database for CityGML, Release 4.1

Content Source

In this GUI section, the feature class of city objects and their origin (versioning information and geographic bounding
box) should be specified.

Feature Classes

City objects of the selected feature class(es) will be exported. Click on the edit button (marked by 1 in Fig. 3.78) to
insert or remove a feature class.

Versioning

Oracle’s Workspace Manager enables storing of different versions of the database as named workspaces. The export
process will use the specified workspace.

If version management is disabled or the current state of the database should be exported, the default workspace name
LIVE must be entered and the timestamp field must remain empty.

Unfortunately, as PostgreSQL does not officially offer any equivalent facility like Workspace Manager, the correspond-
ing elements in the graphical user interface will be disabled whenever the PostgreSQL/PostGIS database instance is
connected.

Content Source
Generate data for all & —Buildinn Whlainr Dade L aond] jgp Relief Feature, Tunnel
following feature dasses City Object 2
Versioning v Building
Workspace v Water Body ptame (0.0
Bounding Box v Land Use

[‘U: E] [E Rt Vegetation base -
Xmin

Transportation
v Relief Feature

Ymin Ymax
City Furniture
Output Generic City Object
@ CSVFile City Object Group
v Tunnel Browse
Separator Character(s) L

Microsoft Excel file (wsx)

Fig. 3.78: Click on the edit button (marked by 1) to add or remove a CityGML feature class from the list of features
classes (marked by 2)

260 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Bounding Box

Use the bounding box section to select an area of interest from which the selected features contained should be
exported. Insert lower left and upper right coordinates of the bounding box or click on the map button to select the
area from a map. Please refer to Section 3.2.2 for more details on the different options for specifying a bounding box.

3.9.2.4 Output

It is possible to export the data in a CSV or XLSX file on the local computer, or directly into an online spreadsheet
hosted in a cloud service.

CSV/XLSX File

A CSV/XLSX file is supported by most spreadsheet applications. It can be easily imported into a local spreadsheet
processing program like Microsoft Excel and Open Office Calc or to a web based online spreadsheet service like
Google Docs.

Click on the CSV File or XLSX file radio button, and write an output file path or select an output file by clicking on the
Browse button. It is also possible to specify another separator character(s) instead of comma (default) for CSV file.
Write any arbitrary separator phrase or click on the edi button (marked by 1 in Fig. 3.79) to select it from a list.

Qutput
@ CSVFile

| Browse

Separator Character(s) [Comma] &

Microsoft Excel file (xsx)

m
=
@
i

Export

Fig. 3.79: Click on the CSV File radio button and write any output file path or click on the Browse button to select an
output file. Type the separator character (s) or click on the edit button (marked by 1) and select one from a list

Note: Starting from April 2015, the earlier versions of the SPSHG plugin are no longer able to directly upload the
exported data to the Google cloud service, since the Google OAuth 1.0 API on which the SPSHG plugin relies has
been deprecated and is not supported by Google any more. Therefore, starting from version 3.3.0 of the 3DCityDB,
the functionality “Directly into the Cloud” has been removed from the SPSHG plugin, and you need to to manually
upload the generated CSV/XLSX files to the cloud.

Example: Uploading XLSX file to Google Fusion Table

Here is a step-by-step guide for uploading a XLSX file to the Google Fusion Tables which a cloud-based web appli-
cation that allows for storing, showing, and sharing large data tables.

Open a web browser (you can use, for example, Google Chrome or Mozilla Firefox, but we recommend not to use
Microsoft Internet Explorer) and type the following address into the address bar.

https://www.google.com/fusiontables/data?dsrcid=implicit

When you go to this page, you will be asked to log in by using your Google account.

3.9. Importer/Exporter plugins 261

https://www.google.com/fusiontables/data?dsrcid=implicit

3D City Database for CityGML, Release 4.1

Enter your Email address and the password of your Google account into the corresponding input fields

After logging in, an Import new table dialog window will be displayed like in the screenshot below:
Import new table

_; From this computer Datei auswahlen | Berlin_Bu.. utes xlsx

. N You can upload spreadsheets, delimited text files (.csv, tsv, or txt), and
d Google Spreadsheets Keyhole Markup Language files (.kml) Learn more

& Create empty table

Or search public data tables

New to Fusion Tables? P Back m

Take a peek! Play with a data set or try a tutorial

Click the Choose File button to open a file selection window

Navigate to the system path of your created Excel file and select it. The following screenshot show an example Excel
file.

After selecting the Excel file, click the Next button to continue
The contents of the selected table is displayed in the dialog window (see the screenshot below)
Briefly check the table contents again and then click the Next button

In the following dialog window (see the screenshot below), enter a table name (for example
“Berlin_Buildings_Attributes”) into the input field Table name and click the Finish button

Now, your Excel file has been successfully uploaded to the Google Cloud Service and a Google Fusion Table instance
has been created (see the screenshot below).

We would like to share our created online spreadsheet with other people. Here we need to change the sharing settings
of the Google Fusion Table by completing the following steps:

Choose the File Share... from the menu bar at the top of the online spreadsheet window

In the Sharing settings window, click on Change... button (see the screenshot below)

In the Link sharing window (see the figure below), choose the second radio button On — Anyone with the link
Click the Save button to save the settings and close the share settings window

Now, the spreadsheet is being shared and can be accessed by anybody who has its URL that can be easily obtained
from the address bar of the web browser (marked in the screenshot below). With this URL and the first column
(GMLID) in the table, the attribute information stored in the spreadsheet are able to be queried and displayed on the
3DCityDB-Web-Map-Client when a city object is clicked on (see Section 5 for more details).

262 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

BEH S =

START EINFUGEN SEITENLAYOUT FORMELM DATEM UBERPRUFENM ANSICHT Team 1 Zhihang Yao -
LT 4 Calibri - - Standard - %BedmgteFormatlarung' g““Emegen - Z - é?v
D g - FKU- A& 22 - op o000 [ZJ Als Tabelle formatieren ~ g% Léschen - [¥] - @i -
Einflgen o oo v
- & - A 5 30 GZEHEnfmmat\mrlagen - (= Format = & -
Zwischenablage Schriftart [F] Ausrichtung] Zahl] Formatvorlagen Zellen Bearbeiten
Al - Jx | amup
A B C D E F
1 |GMLID Building_Height Building_Height_Unit Street_Name House_MNumber Denkmal_Art
2 |BLDG_00030009003f3fa8 12,6454 urn:ogc:def:uom:UCUM::m Bernauer Str. 36
3 |BLDG_000300000020b7dc 6,75036 urn:ogc:def:uom:UCUM::m Lortzingstr. 52
4 |BLDG_00030009006dad12 19,09051 urn:ogc:def:uom:UCUM::m Jasmunder Str. 1
5 |BLDG_00030009003f3f7a 15,91154 urn:ogc:def:uom:UCUM::m Brunnenstr. 142
6 |BLDG_00030009007ef023 17,6925 urn:ogc:defiuom:UCUM::m Wolgaster Str. 11
7 |BLDG_00030000001ec6da 15,21935 urn:ogc:def:uom:UCUM::m Stralsunder Str. 34A
8 |BLDG_0003000a00295b99 22,43517 urn:ogc:def:uom:UCUM::m Brunnenstr. 122
9 |BLDG_00030009007eef9e 16,05035 urn:ogc:def:uom:UCUM:m Swineminder Str. 27
10 |BLDG_0003000000204e5d 24,84635 urn:ogc:def:uom:UCUM:m Stralsunder Str. 51
11 BLDG_0003000e00579387 22,86551 urn:ogc:defiuom:UCUM::m Usedomer Str. (]
12 |BLDG_0003000f004136e9 13,26942 urn:ogc:defiuom:UCUM::m Usedomer Str. 11
13 | BLDG_0003000a00368137 24,74132 urn:ogc:defiuom:UCUM:m Strelitzer Str. a2 Gesamtanlage
14 |BLDG_00030003007eefbl 5,17681 urn:ogc:def:uom:UCUM:m Brunnenstr. 119
15 |BLDG_0003000a002be2da 21,30485 urn:ogc:defiuom:UCUM:m Bernauer Str. N
Import new table
Column names are in row y F—
1 GMLID Buildi... Buildi... Street... House... Denk...
2 BLDG_00... 12.6454 urn:ege:d... Bermnauer 86
Str
BLDG_00... 6.75036 urn:ege:d... Lortzingstr. 32
BLDG_00... 19.09051 um:ege:d... Jasmunder 1
Sir.
5 BLDG_00... 15.91154 urn:ege:d... Brunnenstr. 142
BLDG_00... 17.6925 urn:ege:d... Wolgaster 1
Sir.
T BLDG_00... 15.21935 urn:ege:d... Stralsunder 34A
Sir.
BLDG_00... 22.43517 um:oge:d... Brunnenstr. 122
BLDG_00... 16.05035 um:oge:d... Swinem... 27
Str.
Rows before the header row will be ignered.
New to Fusion Tables? P —

Take a peek! Play with a data

set or try a tutorial.

3.9. Importer/Exporter plug

ins

263

3D City Database for CityGML, Release 4.1

Import new table

Table name Berlin_Buildings_Attributes
Allow export w @
Attribute data to | | @

Attribution page link | |

Description

For example, what would you like to remember about this table in a year?

New to Fusion Tables? Cancel « Back m

Take a peek! Play with a data set or trv a tutorial.

264 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Berlin_Buildings_Attributes

Edited at 13:58

File Edit Tools Help

“ Mo filters applied

1-100 of 954 bk

M4

GMLID
BLDG_00030009003f3fa8
BLDG_000300000020b7de
BLDG_00030009006dad12
BLDG_00030009003f3f7a
BELDG_00030009007ef023
BLDG_00030000001ec6da
BLDG_0003000a00295b5%
BLDG_00030009007eef9e
BLDG_0003000000204e5d
BLDG_0003000e00579887
BLDG_0003000f004136e5
BLDG_0003000a00368137

Rows 1 EE Cards 1 h

Building_Height

Berlin_Buildings_Attributes

Edited at 13:56

Building_Height_Unit

File Edit Tools Help

Share .

MNew table. ..

Open...

Rename...

Make a copy

About this table

Geocode. ..

Merge. .

Find a table to merge with...
Create view. ..

Import more rows...

Download...

Street_Name

House_Number

Denkmal_Art

BLDG_0003000e00579887
BLDG_0003000f004136e9
BLDG_0003000a00368137

12.6454 umcoge:def:uom:UCUM::m Bernauer Str. 86
6.75036 umcoge:defuom:UCUM::m Lortzingstr. 32
19.09051 um:ege:defuom:UCUM::m Jasmunder Str. 1
15.91154 umcoge:defuom:UCUM::m Brunnenstr. 142
17.65925 um:ege:defucm:UCUM:m Welgaster Str. 1
15.21935 um:oge:def:uom:UCUM::m Stralsunder Str. 34A
22 43517 um:oge:def:uom:UCUM::m Brunnenstr 122
16.05035 umn:oge:def:uom:UCUM::m Swineminder Str. 27
24 84635 um:oge:def:uom:UCUM::m Stralsunder Str. 61
2286551 um:oge:def:uom:UCUM::m Usedomer Str. 6
13.26942 umcoge:def:uom:UCUM::m Usedomer Str. 11
2474132 um:oge:def:uom:UCUM::m Strelitzer Str. 42 Gesamtanlage
Rows 1~ | HI Cards 1 h
ling_Height Building_Height Unit Street_Name House Number Denkmal Art
12.6454 um:oge:defuom:UCUM::m Bemnauer Str. 86
6.75036 um:ogc:def:uom:UCUM:m Lortzingstr. 32
19.09051 urmn:oge:def:uom:UCUM::m Jasmunder Str. 1
15.91154 um:oge:def:uom:UCUM::m Brunnenstr. 142
176925 urmcogedef:uom:UCUM::m Wolgaster Str. 1
15.21935 um:oge: defuem:UCUM::m Stralsunder Str. 34A
2243517 um:oge defuom:UCUM:m Brunnenstr. 122
16.05035 urmn:ogc:def:uom:UCUM::m Swineminder Str. 27
24 84635 umn:oge def:uom:UCUM::m Stralsunder Str. 61
22 86551 umcoge:defuom:UCUM::m Usedomer Str 6
13.26942 umn:oge:def:uom:UCUM:m Usedomer Str. 1
2474132 umcoge defuom:UCUM::m Strelitzer Str. 42 Gesamtanlage

3.9. Importer/Exporter plugins

265

3D City Database for CityGML, Release 4.1

Sharing settings

Link to share (only accessible by collaborators)
https:/fwww.google.com/fusiontables/DataSourc e?docid=1tFuuEc 3H)Gewzy CT2hY 1-

Share link via M @ n ,

Whe has access

@ Private — Only you can access Change...

o Zhihang Yao you) Is the cwner
- @googlemail.com

Invite pecple:

Enter names or email addresses # Can edit ~

Owner settings Learn more
Prevent editors from changing access and adding new people

266 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Link sharing

@ On — Public on the web

Shared with specific pecple.

Access: Anyone (no sign-in required) Can view

Anyone on the Internet can find and access this. Mo sign-in reguired.

. & On - Anycne with the link
== Anyone who has the link can access. Mo sign-in reguired.
e Off — Specific people
_—

/1% Berlin_Buildings_Attribut= X ',

€ - C A B8 https//www.google.com/fusiontables/data?docid=1tFuuEc3H)GewzyCT2hY1-8131nP1W_FXUnvpHwCL#rows:id=1

Berlin_Buildings_Attributes

Edited at 13:56

File Edit Tools Help Rows 1~ | Hf Cards 1 h

No filters applied

M 4 1-1000f 954 B »

GMLID Building_Height Building_Height_Unit Street_Name
BLDG_00030009003f3fa8 12,6454 um:ege:def:uom:UCUM::m Bemnauer Str.
BLDG_000300000020b7dc 6.75036 urn:oge:def:uom:UCUM::m Lortzingstr.
BLDG_00030009006dad12 19.09051 urn:oge:def:uom:UCUM::m Jasmunder Str.
BLDG_00030009003f3f7a 15.91154 umn:oge:def:uom:UCUM::m Brunnenstr.
BLDG_00030009007ef023 17.6925 um:oge:def:uom:UCUM::m Wolgaster Str.
BLDG_00030000001ec6da 15.21935 um:oge:def:uom:UCUM::m Stralsunder Str.
BLDG_0003000a00295b99 2243517 um:oge:def:uom:UCUM::m Brunnenstr.
BLDG_00030009007eef% 16.05035 umn:ege:def:uom:UCUM::m Swineminder Str.
BLDG_0003000000204e5d 24 84635 umn:oge:def:uom:UCUM::m Stralsunder Str.
BLDG_0003000e00579887 22.86551 umn:oge:def:uom:UCUM::m Usedomer Str.
BLDG_0003000f004136e9 13.26942 umn:oge:def:uom:UCUM::m Usedomer Str.
BLDG_0003000a00368137 2474132 um:oge:def:uom:UCUM::m Strelitzer Str.

House_Number Denkmal_Art
86
32

1
142
"
34A
122
27
61
6

"

42 Gesamtanlage

3.9. Importer/Exporter plugins

267

3D City Database for CityGML, Release 4.1

3.9.3 ADE Manager Plugin
3.9.3.1 Definition

The ADE Manager is a plugin for the 3D City Database Importer/Exporter and allows to dynamically extend a 3D City
Database (3DCityDB) instance to facilitate the storage and management of CityGML Application Domain Extensions
(ADE). It is implemented based on the Open Source Attributed Graph Grammar (AGG) transformation engine for
realizing the automatic transformation from an XML application schema (XSD) to a compact relational database
schema (including tables, indexes, and constraints etc.) for a given CityGML ADE. In addition, an XML-based
schema mapping file can also be automatically generated which contains the relevant meta-information about the
derived database schema as well as the explicit mapping relationships between the source and target schemas and
allows developers to implement applications for managing and processing the ADE data contents stored in a 3DCityDB
instance.

3.9.3.2 Plugin installation

Like with the Spreadsheet Generator Plugin, the ADE manager plugin can also be optionally installed together with
the 3DCityDB Import/Export tool. During the Installation of the Import/Export tool, the wizard will ask you if you
want to install the ADE Manager Plugin (cf. the following figure):

Select Installation Packages Wea:

Select which application components you want to install, oL LLLLL

CityGML

Step 5of 9

8 select the packs you want to install:
Q Maote: Grayed packs are required.

; Core application files 81,79 MB
i [7] 3D City Database 1,64 MB
Documentation 45,52 MB

- 3D Web Map Client 33,95 MB
----- Sample CityGML and KML/COLLADA datasets 57,95 MB
- [=] Plugins 10,53 MB

[] Spreadsheet Generator Plugin 13,51 MB
ADE Manager Plugin 10,53 MB

Description

This plugin allows for managing CityGML ADEs for the 3D City Database.
Total space required: 232,67 MB
Available space: 336,43 GE

{Made with IzPack - http://izpack.org/)

@ Previous @ Quit

Fig. 3.80: GUI wizard for prompting the installation of ADE Manager Plugin

If the users haven’t checked the “ADE Manager Plugin” box during the installation process, it is also possible to install

268 Chapter 3. Importer-Exporter

http://www.user.tu-berlin.de/o.runge/agg

3D City Database for CityGML, Release 4.1

the plugin later. The installation steps are very similar to those operation steps for installing the Spreadsheet Generator
Plugin. For more details, please refer to Section 3.9.2.2. Once the Import/Export tool and ADE Manager Plugin have
been successfully installed, the user interface of the ADE Manager Plugin should look like the figure below:

3.9.3.3 User Interface

ADE Registration

The user interface of the ADE Manager Plugin is composed of two parts. The first part is mainly used for registering
CityGML ADEs into a 3DCityDB database instance. During the ADE registration process, new ADE-specific database
objects such as feature tables, foreign key contstraints, sequences, simple and spatial indexes are added to the existing
3DCityDB database schema. Also, the metatdata tables (cf. Section 2.7.3.1) are populated with the meta-information
about the registered ADE. To run the ADE registration process, the input files required by the ADE Manager Plugin
must be strictly organized according to the following folder structure.

The input folder must comprise at least two mandatory subfolders namely 3dcitydb and schema-mapping. The first
subfolder 3dcitydb further contains two subfolders oracle and postgresql, which contain the SQL definition file CRE-
ATE_ADE_DB.sql. This file can be excuted by the ADE Manager Plugin for creating the 3DCityDB-compliant ADE
database schema according to the database type (Oracle or PostgreSQL) being used. The SQL file DROP_ADE_DB.sql
contains the DDL-statements for removing the corresponding ADE database schema. These DDL-statements are im-
ported into the metadata table ADE during the ADE registration process and hence are persistently stored at the
database side. When unregistering an ADE, the DDL-statements will be read from the table ADE and excuted by the
ADE Manager Plugin.

The second subfolder schema-mapping shall contain an XML-formatted file which holds the relevant meta-information
(e.g. name, description, XML namespace, and value range of object class id etc.) about an ADE as well as the explicit
mapping information between the XML application schema and relational database schema. This schema-mapping file
is not only used for the ADE registration purpose but also required for the Importer/Exporter and WES tools to control
the query and transaction of ADE datasets. The Importer/Exporter also uses a schema-mapping file for mapping the
elements of the CityGML XML schemas to tables and columns of the 3DCityDB core schema. This mapping file, its
XML Schema definition as well as a Java API for reading and writing a valid schema-mapping files can be found in
the Github repository.

Registration of a Test ADE

The TestADE is an artificial CityGML ADE which is intended to be used for testing and demonstrating how to use
the citygml4j and 3DCityDB software APIs to implement 3DCityDB-compilant applications for working with the
real-world ADEs. The TestADE has been designed to reflect the most typical modelling structures offered by the
CityGML ADE mechanism such as subtyping or property injection. Moreover, the contained feature and data types
have been copied (and simplified) from existing CityGML ADEs such as the Energy ADE and the UtilityNetwork
ADE. A central repository containing the TestADE’s UML data model, XML schema definition file, database schema,
schema-mapping file as well as the Java classes for reading and writing ADE datasets is hosted in the 3DCityDB’s
Github website.

The input SQL and schema-mapping files for ADE registration are located under the relative path “extension-test-
ade/test-ade-citydb/resources” of the TestADE’s Github repository. After opening the ADE Manager Plugin, the users
can click on the Browse button to open a file chooser dialog for providing the local path of the input folder. After
connecting to the target 3DCityDB instance, the ADE registration process can be started by clicking on the Register
ADE button.

While performing the ADE registration process, the ADE database schema will be firstly created, and the metadata
information will be written to the 3DCityDB metadata tables subsequently. In addition, the database stored functions

3.9. Importer/Exporter plugins 269

https://github.com/3dcitydb/importer-exporter/tree/master/impexp-core/src/main/java/org/citydb/database/schema
https://github.com/3dcitydb/extension-test-ade

3D City Database for CityGML, Release 4.1

|
File Project View Help

Import Export KML/COLLADA/gITF Export ADE Manager Database Preferences

ADEID Mame Description Version DB_Prefix Creation_Date
Input for ADE Registry
Browse
Fetch ADEs Register ADE Remove selected ADE Generate Delete-Script Generate Envelope-Script
Transformation

XML Schema (XSD)

Browse

Read XML Schema

MName (maximal 1000 characters)

MNamespace

Description (maximal 4000 characters)

Version (maximal 50 characters)

DB_Prefix {maximal 4 characters)

InitialObjectdassId (minimal value: 10000)

50

Qutput

Browse

Transform

Fig. 3.81: User interface of the ADE Manager Plugin

270 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

v [resources
v [Jdcrtydb
v [oracle
[} CREATE_ADE_DB.sq
[DROP_ADE_DB.sq|
v [postgreSCL
[} CREATE_ADE_DB.sq
[} DROP_ADE_DB.sq|
v [schema-mapping

¥, schema-mapping.xml

Fig. 3.82: Specific folder structure of the required input files for ADE registration

Import Export KML/COLLADA/QITF Export ADE Manager Database Preferences

ADEID MNarme Description Version DB_Prefix Creation_Date

Input for ADE Registry

E:'\Repository\ 3DCityDE\ex tension-test-ade\test-ade-citydbiresources Browse

Fetch ADEs Register ADE Remove selected ADE Generate Delete-Script Generate Envelope-Script

Fig. 3.83: Dialog panel for registering CityGML ADEs

3.9. Importer/Exporter plugins 271

3D City Database for CityGML, Release 4.1

and procedures e.g. DELETE script and ENVELOPE script will also be newly generated. After the ADE has been suc-
cessfully registered, a list of all ADEs registered in the 3DCityDB instance along with their relevant meta-information
is shown on the ADE information panel (cf. the following figure).

File Project View Help

Import Export KML/COLLADA/QITF Export ADE Manager Database Preferences

ADEID MName Description Version DB_Prefix Creation_Date
06b4f55820d9dacd9992. ., 'Test.-!\DE 'Test ADE 1.0 test 2013-09-03 13:15:53

Input for ADE Registry

E:'\Repository | 30CityDE\ex tension-test-ade \test-ade-ctydb \resources Browse

Fetch ADEs Register ADE Remove selected ADE Generate Delete-Script Generate Envelope-Script

Fig. 3.84: GUI panel for displaying the relevant meta-information of registered ADEs

The users may also use a database client application like pgAdmin (PostgreSQL) and SQLDeveloper (Oracle) to check
whether the ADE database schema has been correctly created. All new tables should be prefixed with the characters
“test " and the new delete and envelope functions/procedures should have the prefix “del_test_” and “env_test_”
respectively.

When connecting to another 3DCityDB instance, the users may click on the Fetch ADEs button to update the contents
in the meta-information panel and thus to check which ADEs have already been registered into the target database.
The Generate Delete-Script and Generate Envelope-Script buttons allow to generate the respective database stored
functions/procedures again and display them in a popup dialog window. It is possible to install the script directly by
clicking on the the Install button or save it to a SQL file. This gives the developers the possibility to modify the script
functions and to install them via the database client applications e.g. pgAdmin and SQLDeveloper.

ADE Transformation

The second part of the ADE Manager Plugin offers the functionality to read an ADE’s XML application schema def-
inition file and automatically generate the database schema and XML schema-mapping files according to the specific
folder structure required for the ADE registration. However, a notable issue is that some relevant meta-information
about an ADE are usually missing in its XML schema, since they cannot be encoded using the native syntax of the
XML schema and will be lost while deriving the XML schema from its ADE’s UML model (e.g. when using a trans-
formation tool like ShapeChange. Moreover, some certain kinds of meta-information can even not be represented in
the UML model. A good model-driven solution for solving this issue is to extend the UML model by adding a few
specific taggedValues (cf. the table below) which can be automatically translated and encoded into the <xs:annotation>
elements in XML schema.

272 Chapter 3. Importer-Exporter

https://shapechange.net/

3D City Database for CityGML, Release 4.1

room
schema
schema_referendng
schema_to_objectdass
solitary_vegetat_object
surface_data
surface_geometry
test_buming
test_buildingu_to_address
test_buildingunit
test_energyperformancecer
test_facilities
test_industrialbuilding
test_industrialbuildingpa
test_industrialbuildingro
test_other_to_thema_surfa
test_otherconstruction
tex_image
textureparam

[T 1 G D

0 B D 1 2) 2

HI"HI"HI"HI"HI"HI"HI"HI"HI

|

Fig. 3.85: Exploration of the newly created ADE tables using pgAdmin

1
m
3
m
L
m
]
3
(]
I
L
T
m

butomatically generated database script
FUNCTION citydb.
FUNCTION citydb.
FUNCTION citydb.
FUNCTION citydb.
FUNCTION citydb.
FUNCTION citydb.
FUNCTION citydb.
FUNCTION citydb.
FUNCTION citydb.
FUNCTION citydb.

TTTRT T T WRT e o= el

{Creation Date:
cleanup appearances (only global INTEZER DEFRULT 1)
RETURNS SETCF woid

cleanup table(tab name TEXT) RETURNS SETOF INTIEGER
del address{int([], caller INTEGZER DEFRULT Q)
del address{pid int) RETURNS integer

del appearance{int[], caller INTEGER DEFRULT 0)
RETURNS integer

caller INTEGER DEFAULT
del breakline reliefipid int) RETURNS integer

del bridge{int[], caller INIEGER DEFRULT 0)

AmT T A Jams A S e

cleanup schemal)

del appearance(pid int)
del breakline reliefiint[],

TTETTIORID = et = oo e

Install

Sawve Script

Sawve Script

RETURNS

RETURNS SETOF

REETURNS S5SET

0) RETUR

>

Browse

>

2015-05%-03 13:47:42 ™

RETURNS SETOF i:v

Fig. 3.86: Dialog window for showing and installing newly generated database stored functions/procedures

3.9. Importer/Exporter plugins

273

3D City Database for CityGML, Release 4.1

Table 3.10: Tagging top-level feature classes

taggedValue topLevel (true | false)

Description This taggedValue allows for determining if an ADE
feature class is top-level

<element name="IndustrialBuilding"
substitutionGroup="bldg:_
—AbstractBuilding"
<xs:annotation> type="TestADE:IndustrialBuildingType">
in XML-Schema <annotation>
<appinfo>
<taggedValue tag="topLevel">true</
—taggedvalue>
</appinfo>
</annotation>
</element>

Example
Of using

274 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Table 3.11: Tagging the Multiplicity of ADE Hook Properties

taggedValue

minOccurs and maxOccurs (Integer value |
,,unbounded”)

Description

The combiniation of the two taggedValues allows for
determining the

multiplicity information of each ADE hook property.
In UML model, this

multiplicity information can be explicitly specified but
it is lost in

the XML schema, because every ADE hook property is
hard-encoded with a

multiplicity of [0..*] in the XML schema. Since the
current version

(2.5.1) of the ShapeChange tool is still not able to read
the multiplicity

of the hook properties from the UML model directly,
the two tagged Values

are hence required although they provide the redundant
multiplicity

information in UML model

Example
Of using
<xs:annotation>
in XML-Schema

<element name="ownerName"
substitutionGroup="bldg:__
—GenericApplicationPropertyOfAbstractBuil
type="string">
<annotation>
<appinfo>
<taggedValue tag="maxOccurs">1</
—taggedvalue>
</appinfo>
</annotation>
</element>

ding

3.9. Importer/Exporter plugins

275

3D City Database for CityGML, Release 4.1

Table 3.12: Tagging the relationship type between classes

taggedValue relationType (association laggregation |
composition)
Description An enumeration attribute allowing to distinguish the

three relationships

between two associated classes. This meta-information
is also lost while

mapping UML -> XML schema, because the XML
schema doesn’t support the

distinguishment between the three relation types. This
taggedValue is also

redundant from the view of UML, but required when
using ShapeChange

<element maxOccurs="unbounded" minOccurs=

Example
. —"0" name="boundedBy"
Of using type="bldg:BoundarySurfacePropertyType
<xs:annotation> >
in XML-Schema <annotation>

<appinfo>
<taggedValue tag="relationType">
—»composition</taggedvalue>
</appinfo>
</annotation>
</element>

The realization of the model transformation process is mainly based on the concept of “Graph Transformation” and
implemented using the Open Source graph transformation engine AGG. It comes with a graphical editor (a runnable jar
file AggV21Build.jar in the folder lib) that allows users to define an arbitrary number of graph-structured transforma-
tion rules for mapping complex object-oriented models onto a compact relational database models (cf. [YaKo2017]).
While developing the ADE Manager Plugin, around 50 mapping rules have been designed, which can also be modified
by developers for customizing the model transformation behaviour. The workspace file containing the transformation
rules is located under “/src/main/resources/org/citydb/plugins/ade_manager/graph/Working_Graph.ggx” and can be
opened using the AGG editor. Using the predefined mapping rules we were able to correctly transform all well-
known CityGML ADE:s like the Energy ADE, Noise ADE, UtilityNetwork ADE, Dynamizer ADE, IMGeo3D and
further custom ADESs to compact relational schemas. In the future, for some ADEs we may publish complete ADE
packages on the 3DCityDB github pages as Open Source. Some will be commercially available from the 3DCityDB
development partners.

Transformation of the TestADE

The XML schema definition file of the TestADE is located under the path “fest-ade-
citygmldjsrcmainresourcesorgcitygmladetestschemaCityGML-TestADE.xsd”. It can be selected or entered using
a file chooser dialog window by clicking on the Browse button in the input panel (cf. [1] in Fig. 3.88). After entering
the path of the XML schema and clicking on the button Read XML Schema, the XML schema file will be read and
parsed. All namespaces (except the GML and CityGML namespaces) included in the the XML schema file will be

276 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

¥

File Edit Mode Transform Parser Analyzer Preferences Help

% & | [le] [r %M N (allkc]c] ||k 8] [r] %[0 B [a]5¢]] S

e [mlE @ VIR Rw ek E RN A+][-] MEl= sy e 0 e £

lcraGras (=] : | ... 4| Map-ComplexType-To-Table of EdGraphO| Schema @: Node Types
4 EdGraphOfMappingSchema 323 ' : 82?::::2:3:{;?2“;:mn =
E ::m]MaDginnl:lnnde\ | O AbstractGeometrypro...
appingGrapl = (WE :
3 4 mapsTa | O BrepGeometryProperty
o [0]CreateObjectClassTable - " | O CodeListProperty
- [0]Map-ComplexType-To-Table | | || |- — \ | O codetistrype

-

o [0]MapInheritance To-OneTable | || % 4 T ;| 2 Column

IS [0]Map-Inheritance-To-OneTable | Ie:;?::::ZplaDEC'Ahstracf""") TolowerCasa(I : E gomﬂlex?{lnbnle

o [0]Create-Inline-Datatype o IE pat k\ e o Cgﬁg‘:-r;g:pmpenv
[0]Map-InlineDatatype 2 g belongsTo “| O Counter

o [[0]Clone-SimpleAttribute-for-Inlin = 3 \ Datokatia

[[0]ConvertTimePeriodPropertyTy| || \ =

[[0]ConvertMeasurlistPropertyTy| || - 4 m e —

LS [1]Create-ObjectClassID-for-Mer

-

name="ID" — o
o= [1]Create-ObjectClassID-for-Mer : _:M:};ese
o= []Create-ObjectClassiD-for-Mer¢ _|| |~ % —belongys?l'o
o [1]Map-nheritance-To-Join 3 3 “| —clone
& [2]Map-M:N_Association_agg_c i||—— comporises
o [2]Map-M:N_Association_no_agg #| —— contains
o [2]Map-M:N_Association-Self Z||——extends
L [ZIMap-1:N_Association | | :!n!mFeType
- [2Map-1:N_Association-Self ; - NG gl Mppe ST 22 | iy
& [2]Map-1:N_Association-With-She || | —mapsTo
- [2]Map-1:N_Association-With-For| || - - | —reverseProperty
o [2]Map-1:1_Association ;| — targetColumn
[[2]Map-1:1_Association-Self i ::::g:gs;‘:

o [2]Map-1:1_Association-With-Sh #:| — treeHierarchy
=l =

Fig. 3.87: AGG graph editor for defining model transformation rules for the ADE Manager Plugin

listed on the left panel (cf. [2] in Fig. 3.88). The namespace “http://www.citygml.org/ade/TestADE/1.0” of the target
ADE shall be selected and its background will be highlighted with blue color. In the next step, some additional
relevant meta-information for the ADE must be specified in the panel (cf. [3] in Fig. 3.88) and will be written into
the output schema-mapping file. More details about the meaning of the individual metadata attribute are described
in Section 2.7.3.1. In the last step, the path for the output files should be specified and the Transform button can be
clicked to start the transformation process.

The entire transformation process should take just a few seconds, since the TestADE has a rather simple structure
with only 10 classes and data types. The output files are exactly organized according to the specific folder structure
described in Section 3.9.3.3. A full example of the output files is located under the path “test-ade-citydbresources”
which can be directly used as the input folder for performing the ADE registration into a 3DCityDB instance.

3.9.3.4 Workflow of extending the Import/Export Tool

Once an ADE has been successfully registered into an 3DCityDB instance, the Import/Export tool must be manually
extended to support the import and export of the ADE datasets. The Import/Export tool provides a specific Java API
that allows developers to implement the ADE-specific Import/Export-extensions based on a simple plugin mechnism.
An example of how to implement such Java extensions for the TestADE can be found in the Github repository. In the
following, a brief guide about operating the Import/Export tool with ADE extensions is presented.

* Create a folder named “ade-extensions” in the installation directory of the Import/Export tool, if the folder does
not exist.

* Download the latest version of the TestADE’s Java extension, database schema, and schema-mapping file from
the Github website

» Unpack the zip file to a folder e.g. named “extension-test-ade” which shall contain three subfolders 3dcitydb,
lib, and schema-mapping.

¢ Copy the extension-test-ade folder into the ade-extension folder. The folder structure should look like below.

3.9. Importer/Exporter plugins 277

https://github.com/3dcitydb/extension-test-ade/releases

3D City Database for CityGML, Release 4.1

Transformation
XML Schema (XSD)
|E:\Repository | 3DCityDB \extension-test-ade \test-ade-citygml4j\src'main resources'org\cityaml\ade \test\schema \CityGML-TestADE. xsd "Brﬂnwse
Read XML Schema
‘ Mame (maximal 1000 characters)
Namespace %
| TestADE
‘ i d g i
Description (maximal 4000 characters)
[An ADE for Test
Version (maximal 50 characters)
[10
DB_Prefix (maximal 4 characters)
[test
InitialObjectdassId (minimal value: 10000)
[10000
Output
| Browse
Transform

Fig. 3.88: GUI panel for transforming XML schema to 3DCityDB database schema and schema-mapping file

278 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

3DCityDB-lmporter-Exporter-4.0
3dcitydb

Jd-web-map-client

ade-extensions
extension-test-ade
3dcitydb
lib

schema-mapping

bin
contribs
lib
license
rmanual
plugins
samples

templates

Fig. 3.89: Folder structure of the Import/Export tool with ADE extensions

3.9. Importer/Exporter plugins 279

3D City Database for CityGML, Release 4.1

* Start the Import/Export tool. The JAR files in the extension-test-ade/lib folder along with the schema-mapping
file in the extension-test-ade/schema-mapping will be automatically loaded by the Import/Export tool.

¢ Connect to an empty 3DCityDB instance. This database could be named as “TestADE” and its coordinate
reference system can be defined with SRID = 31468

* Open the tab panel Database Database operations ADEs to check whether the ADE-extensions for Im-
port/Export tool is successfully installed.

The screenshot below shows that the Import/Export tool is now enabled for supporting the TestADE, while the con-
nected 3DCityDB instance is still not. Therefore, the next step is to use the ADE Manager plugin to complete the
ADE registration and database schema creation.

Import Export KML/COLLADA/gITF Export ADEManager SPSHG Database preferences Console
[11:32:02 INFO] Connecting to database profile "TestRDE'.
. - . .
Connection | TestADE i [11:3 INFO] Database connection established.
[1L:3 INFQ] 3D City Database: 4.0.0
Connection details [11:3 INFO] DEMS: PostgreSQL 5.€.€
Description | TestADE Apply [11:3 INFQO] Connection: postgresflocalhost:5432/TestADE
[11:32: INFO] Schema: citydb
Username |postgres New [1L- INFC] SRID: 314€8 (Projected)
[1l: INFQO] SRS: DHDN / 3-degree Gauss-Kruger zone 4
Password esesss
Copy [11l: INFO] gml:srsName: urn:ogc:def:crs:EPSG::314€8
Save password Delete [11:32:02 INFQ] Versiomning: Not supported
ele
Type PostgreSQL /PostGIS ~
Server localhost Port 5432
Database |TestADE
Schema citydb w Fetch schemas
Disconnect Info
Database operations
Workspace |Use default workspace Timestamp (DD.MM. YYY)
Database report Bounding box Indexes Reference system ADEs
Name Version Database Importer [Exporter
TestADE 1.0 X v

Fig. 3.90: User interface for checking the status of ADE support of database and Import/Export tool

* Activate the ADE Manager Plugin and follow the operation steps described in Section 3.9.3.3.
* Reconnect the TestADE database again. The ADE status panel should be updated like the figure below.

* To test the Import/Export function, open the Import panel and the select the ADE datasets which are located
under the path “resources\datasets\”

It is possible to use the filter options of the CityGML import panel to import a subset of the ADE datasets. For
example, if the the Feature classes filter is used (cf. the figure below), only TestADE feature objects will be imported.

A summary of the ADE import process is printed in the console window like the following screenshot:
 Activate the Database panel and activate the Database report subpanel.

* Click on the Generate database report button to generate a statistic of the data contents stored in the ADE
tables.

The operation steps for performing ADE export are very similar to those for the ADE import.

 Activate the Export panel and configure the filter options e.g. activate the Feature class filter and choose the
TestADE

280 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

Import Export KML/COLLADA/GITF Export ADE Manager SPSHG Datsbase preferences
Connection | TestADE
Connection details
Description TestaDE Apply
Username |postares New
Password ~ eeesss
Copy
Save password
= ¥ Delete
Type PostgreSQL /PostGIS v
Server localhost Port 5432
Database TestADE
Schema citydb ~ Fetch schemas
Disconnect Info
Database operations
Workspace |Use default workspace Timestamp (DD.MM.YYY)
Database report Bounding box Indexes Reference system ADEs
Name Version Database Importer Exporter
TestADE 1.0 v v
Info

Console

t05:
:05:
2:05:
t05:
c056:
Hl-H
t05:
:05:
:05:
2:05:
t05:
c056:

38
38
35
39
35
39
35
35
39
35
39
35

INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]

Disconnected from database.

Connecting to database profile 'TesthADE'.
Database connection established.

3D City Database: 4.0.0

DBMS: PostgreSQL S.€.€

Connection: postgres@localhost:5432/TestADE
Schema: citydb

SRID: 314€8 (Projected)
SRS: DHDN /
gml:szsHame:
Versioning:
CityGML ADE:

3-degree Gauss—-Eruger zone 4
urn:oge:def:cxrs:EPSG::314€8
Not supported
TestADE 1.0

Fig. 3.91: Status indicating the full support of database and Import/Export tool

* Click on the Export button to start the export process. The export configuration and a summary of the ADE
export process is shown in the figure below:

Please refer to Section 1.1 for system requirements and a documentation of the installation procedure.

APACHE

>UNDATION

The 3D City Database Importer/Exporter is free software under the Apache License, Version 2.0. See

the LICENSE.txt file shipped with the software for more details. For a copy of the Apache License, Version 2.0, please
visit http://www.apache.org/licenses/.

3.9. Importer/Exporter plugins

281

http://www.apache.org/licenses/

3D City Database for CityGML, Release 4.1

File Project View Help

Import Export KML/COLLADA/GITF Export ADE Manager SPSHG Datsbase Preferences

E:\Repository\3DCityDB\test-ade \resources\datasets \TestLod 20therConstructions. gml Browse
E:\Repository\3DCityDB\test-ade \resources\datasets \TestLod4IndustrialBuildings. aml)
Remave
Versioning
Workspace |Use default workspace
O gml:id
choose
® Complex Filter
[] ogml:name
choose
[] cityObjectMember [appearanceMember [featureMember
from = [to #
[Bounding Box
. . ‘ Reference system | Same as in database ~
Xmin | xmax |
Yrin - | Ymax |

[] Feature Classes

B [] CityObject
B[] Bridge
&[] Building
- [] cityFurniture
“ [[] CityObjectGroup
“ [[] Generics
-] LandUse
- [JRelief
* [[] Transportation
[Turnel
- D Vegetation

i-E- - @

Fig. 3.92: Import of ADE dataset using Feature Class filter

282 Chapter 3. Importer-Exporter

3D City Database for CityGML, Release 4.1

[12:20:40
[12:20:40
[12:20:40
[12:20:40
[12:20:41
[12:20:41
[1Z2:20:41
[12:20:41
[12:20:41
[12:20:41
[12:20:41
[12:20:41
[12:20:-41
[12:20:41

INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]

Resclwving XLink references.
Cleaning temporary cache.
Activating spatial indexes. ..
Activating normal indexes...
Imported city objects:
test:BuildingUnit: 227¢
test:DHWFacilities: 227¢
test:IndustrialBuilding: 1
test:IndustrialBuildingPart: 1
test:IndustrialBuildingRoofSurface: 4855
290
Processed geometry objects:
Total import time: 05 s.
Database import successfully finished.

test:OtherConstruction:
4555¢

Fig. 3.93: Console window displaying the summary of the ADE import process

Import Export KML/COLLADA/QITF Export ADE Manager SPSHG Database Ppreferences Cansole
$CITYCRJECTGROUR
) $EXTERANAL REFERENCE
e ot #GENZRALIZATION

Workspace |Use default workspace

Database report Bounding box Indexes Reference system ADEs

Generate database report

Ty
™
-
Lo

Connection details #CENERIC_CITYORJECT
. $GRID_COVERAGE
Description | TestADE Apply -
| #GROUP_TO_CITYOBJECT
Username postgres New | $IMPLICIT_GEOMETRY
d #LAND_USE
Password [essees copy | #MASSPOINT_RELIEF
[] Save password SOPENING
| Delete | 20PENING TO_THEM SURFACE
Type PostgreSQL [PostGIS ~ #PLANT_COVER
DASTER RELIEF
server =t Port [S452 :RELIEF-C():{DONENI
Database TestADE $RELIEF_FEAT_TO_REL_COMP
2RELIEF FEATURE
Schema citydb ~ | | Fetchschemas #ROOM
) #SOLITARY_VEGETAT_OBJECT
Disconnect Info #SURFACE_DATA
SURFACE GEOMETRY
TEST_BUILDING
Database operations .

Timestamp (DD.MM.YYY) TEST_BUILDINGUNIT

TEST_FACILITIES
TEST INDUSTRIALBUILDING

TEST OTHERCONSTRUCTION

TEST_BUILDINCU_TO_ADDRESS
TEST_ENERGYPERFORMANCECER
TEST_INDUSTRIALEUILDINGPA

TEST_INDUSTRIALBUILDINGRO
TEST_OTHER_TO_THEMA SURFA

O OO 00 0000000000000 00

(5]
(5]
=
Ll

4552
227€

4255
4855
230

$TEX_IMACE
#TEXTUREPARAM
#THEMATIC SURFACE

ATTN morTon

4855

Fig. 3.94: Console window showing a statistic of the ADE tables

3.9. Importer/Exporter plugins

283

3D City Database for CityGML, Release 4.1

ile Project View Help

Import Export KML/COLLADA/QITF Export ADE Manager SPSHG Database Preferences

E:\Test\data_out\TestADE\data.gml

()

g

choose

® Complex Filter
[] ami:name

choose

[] cityObjectMember / appearanceMember / featureMember

from £
Bounding Box
e B K

Xmin

Reference system |Same as in database

Xmax
¥min fmax
[] Feature Classes

B[] CityObject
(£33 DBridge
(& [] Buiding
[] CityFurniture
&] CityObjectGroup
[[7] Generics
[7] LandUse
[] Relief
[[7] Transportation
& 7] Tunnel
[#- [7] vegetation
[[] WaterBody

Export

[Ready

PostgreSQL PostGIS database connected

Console

[13:
[13:
[13:
[13:

[13:
[13:
[13:
[13:
[13:
[13:
[13:
[13:
[13:
[13:
[13:
(13:

INFQ]
INFO]
INFQ]
INFO]

Initializing database export...
Spatial indexes are enabled.
Normal indexes are enabled.

Created texture files subfolder 'appeara

——
INFO]
INFO]
INFQ]
INFO]
INFO]
INFO]
INFO]
INFO]
INFC]
INFO]
INFO]
INFO]

Y
Found 251 top-level feature(s) matching
Clesning temporary cache.

Exported city objects:
test:BuildingUnit: 227€
DHWFacilities: 227€
IndustrialBuilding: 1
IndustrialBuildingPart: 1
:IndustrialBuildingRoofSurface:
test:OtherConstruction: 250
Processed geometry objects:
Total export time: 04 s.
Database export successfully finished.

test:
test:
test:
test 4853

4593¢

Fig. 3.95: Console window showing a summary of ADE export

284

Chapter 3. Importer-Exporter

CHAPTER 4

Web Feature Service

The OGC Web Feature Service Interface Standard (WFS) provides a standardized and open interface for requesting
geographic features across the web using platform-independent calls. Rather than sharing geographic information
at the file level, for example, the WFS offers direct fine-grained access to geographic information at the feature and
feature property level. Web feature services allow clients to only retrieve or modify the data they are seeking, rather
than retrieving a file that contains the data they are seeking and possibly much more.

The 3D City Database offers a Web Feature Service interface allowing web-based access to the 3D city objects stored
in the database. WEFS clients can directly connect to this interface and retrieve 3D content for a wide variety of
purposes. Thus, users of the 3D City Database are no longer limited to using the Importer/Exporter tool for data
retrieval. The WFS interface is platform-independent and database-independent, and therefore can be easily used to
build CityGML-aware applications.

The 3D City Database WFS interface is implemented against the latest version 2.0 of the OGC Web Feature Service
standard (OGC Doc. No. 09-025r2) and hence is compliant with ISO 19142:2010. Previous versions of the WFS
standard are not supported though. The implementation currently satisfies the Simple WFS conformance class. The
development of the WFS is led by the company virtualcitySYSTEMS GmbH, Berlin, which offers an extended version
of the WFS with additional functionalities that go beyond the Simple WFS class (e.g., thematic and spatial filter
capabilities and transaction support). This additional functionality may be fed back to the open source project in
future releases.

4.1 System requirements

The 3D City Database WFS is implemented as Java web application based on the Java Serviet technology. It therefore
must be run in a Java servlet container on a web server. The following minimum software requirements have to be
met:

¢ Java servlet container supporting the Java Servlet 3.1/ 3.0 (or higher) specification
* Java 8 Runtime Environment (Java 7 or earlier versions are not supported)

The WES implementation has been successfully deployed and tested on Apache Tomcat 9 (http://tomcat.apache.org/).
This is also the recommended servlet container. Apache Tomcat 8 and 7 are also supported, whereas any previous
version of the Apache Tomcat server will not work.

285

http://tomcat.apache.org/

3D City Database for CityGML, Release 4.1

Note: Neither Java nor a servlet container are part of the WFS distribution package and therefore must be properly
installed and configured before deploying the WFS. Please refer to the documentation of your favorite servlet container
for more information.

Hardware requirements for the web server running the WFS depend on the intended use and number of concurrent
accesses. There are no minimum requirements to be met, so make sure your system setup meets your needs. Also note
that the WFS does not provide its own security layer (e.g., to limit access to specific networks or users). So, it is
your responsibility to take any reasonable physical, technical and administrative measures to secure the WFS service
and the access to the 3D City Database.

WEFS clients connecting to the WES interface of the 3D City Database must support the OGC WES standard version
2.0. Moreover, they should be capable of consuming 3D data encoded in CityGML, which is the default data format
delivered by the WFS server.

4.2 Installation

The 3D City Database WES is shipped as a Java WAR (web archive) file. Please download the WFS distribution
package from http://www.3dcitydb.org/. Besides the WAR file, the distribution package also contains Java libraries
that render mandatory dependencies for the WFS service and that must be installed as shared libraries in your servlet
container.

Note: Alternatively, you may build your own WAR file from the source code provided on [GitHub](https://github.
com/3dcitydb/web-feature-service). This requires that you are experienced in building Java web applications from
source using Gradle. No further documentation is provided here.

Please follow the following installation steps:

Step 1: Install and properly configure your Java servlet container

Please refer to the documentation of your servlet container for hints on installation and configuration. Make sure that
the servlet container uses Java 8 (or higher) for running web applications.

Step 2: Install the mandatory JAR libraries in your servlet container

The WES service requires mandatory JAR libraries to be available in the servlet container. This mainly comprises
JDBC libraries for connecting to the database system running the 3D City Database instance. The libraries are
shipped with the distribution package. The list of libraries will look like this:

* 0jdbc8-18.3.0.0. jar (Oracle JDBC driver)
* postgresgl-42.2.5. jar (PostgreSQL JDBC driver)
* postgis—Jjdbc-2.3.0. jar (PostGIS JDBC extension)

The libraries must be installed as shared libs or common libs (terminology may differ) in your servlet container. For
Apache Tomcat 7 (or higher), this simply means placing the JAR files into the lib folder of the Tomcat installation
directory. Afterwards, you need to restart Tomcat. Please refer to the documentation of your servlet container for more
information.

Step 3: Deploy the WFS WAR file on your servlet container

286 Chapter 4. Web Feature Service

http://www.3dcitydb.org/
https://github.com/3dcitydb/web-feature-service
https://github.com/3dcitydb/web-feature-service

3D City Database for CityGML, Release 4.1

If your servlet container is correctly set up and configured, simply deploy the WAR file to install the WFS web
service. Again, the way to deploy a WAR file varies for different servlet containers. For Apache Tomcat servers, copy
the WAR file into the webapps folder, which, per default, is in the installation directory of the Apache Tomcat server.
This will automatically deploy the application. Alternatively, use the web-based Tomcat manager application to
deploy WAR files on the server. The manager application is included in a default installation. For more information
on deploying WAR files on Tomcat or different servlet containers, please refer to the corresponding documentation
material.

Note: If you use the automatic deployment feature of Tomcat as described above, the name of the WAR file will be
used as context path in the URL for accessing the application. For example, if the WFS WAR file is named citydb-
wfs.war, then the context path of the WFS service will be http:// [host] [:port]/citydb-wfs/. To pick a
different context path, simply rename the WAR file or change Tomcat’s default behavior.

Step 4: Configure your servlet container (optional)
Make sure that your servlet container has enough memory assigned (heap space ~ 1GB or more).

Note: You may, for instance, use the Java command-line option -Xms for this purpose.

Step 5: Configure the WFS service

The WFS must be configured to meet your needs. For instance, this includes providing connection details for the 3D
City Database instance and the definition of the feature types that shall be served through the interface. These settings
must be manually edited in the configuration file config.xml of the service. A graphical user dialog will be developed
for a future release. Please check the next chapter for how to configure the WFS.

Note: Changes to the config.xml file typically require a reload or restart of the WES web application (a restart of the
servlet container itself is, of course, not required). Please check to documentation of your favorite servlet container
for how to do so. In case of Apache Tomcat, you can simply use the manager application to reload web applications.

Step 6: Install ADE extensions (optional)

As alast step, you may install additional CityGML ADE extensions for the WFS. This step is optional and requires a
compiled and ready-to-use ADE extension package. Simply copy the contents of the ADE extension package to the
WEB-INF/ade-extensions directory of your deployed WEFS application. The WEB-INF directory is typically located
in the application folder, which is generally named after the WAR file and itself is a subfolder of the webapps folder
in the Tomcat installation directory (see Fig. 4.1).

Note: The CityGML ADE must also be registered in the 3DCityDB instance to which your WFS service shall
connect.

4.2. Installation 287

3D City Database for CityGML, Release 4.1

4.3 Configuring the Web Feature Service

After deploying but before using the WES service, you need to edit the config.xml file to make the service run properly.
The config.xml file is in the WEB-INF directory of the WFS web application. The WEB-INF is a subfolder of the
application folder, which is generally named after the WAR file and itself is a subfolder of the webapps folder in the
Tomcat installation directory. This may be different if you use another servlet container.

For example, assume that the WFS web application was deployed under the context name citydb-wfs. Then the
location of the WEB-INF folder and the config.xml file in a default Apache Tomcat installation is shown below.

v apache-tomcat-9.0.5 ~ Name
bin ade-extensions
conf classes

lib lib
logs mimetypes

schemas

temp

VI webapps I I |J cnnfig.xml I

.J wfs.log
v citydb-wfs

META-INF

> wes-ne |

wfsclient

Fig. 4.1: Location of the WEB-INF folder and the config.xml file.

Open the config.xml file with a text or XML editor of your choice and manually edit the settings. An XML Schema for
validating the contents of the config.xml file is provided as file config.xsd in the subfolder schemas. After every edit
to the config.xml file, make sure that the config.xml file validates against this schema before reloading the WFS
web application. Otherwise, the application might refuse to load, or unexpected behavior may occur.

In the config.xml file, the WES settings are organized into the main XML elements <capabilities>, <featureTypes>,
<operations>, <postProcessing>, <database>, <server>, <uidCache>, <constraints>, and <logging>. The discussion
of the settings follows this organization in the subsequent clauses.

4.3.1 Database settings

The database settings define the connection parameters for connecting to the 3D City Database instance the WFS
service should give access to. The contents of the <database> element are shown below.

288 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

Listing 4.1: Database settings in the WFS config.xml file.

<database>
<connection
initialSize="10"
maxActive="100"
maxIdle="50"
minIdle="0"
suspectTimeout="60"
timeBetweenEvictionRunsMillis="30000"
minEvictableIdleTimeMillis="60000">
<description/>
<type>PostGIS</type>
<server/>
<port>5432</port>1i
<sid/>
<schema/>
<user/>
<password/>
</connection>
</database>

Provide the fype of the database (Oracle or PostGIS), the server name (network name or IP address) and port number
(default: 1521 for Oracle; 5432 for PostgreSQL) of the database server, the sid (when using Oracle, enter the database
SID or service name; for PostgreSQL enter the database name), and the user and password of the database user. You
can copy&paste these settings from the config file of the Importer/Exporter. Use the optional schema element if you
want to connect to a schema other than the default schema. The description is optional and can be left empty.

In addition to these minimum settings, the <connection> element takes optional attributes that let you configure the
use of physical connections to the database server. This is especially important for production servers and if more than
one WES service connects to the same database server (in this case, you should also carefully configure the database
itself). The attributes together with their meaning are described in the following table.

4.3. Configuring the Web Feature Service 289

3D City Database for CityGML, Release 4.1

Table 4.1: Optional database connection settings.

Attribute Description

initialSize (int) the initial number of physical connections that are
created
when the database connection is established (default:
10).

maxActive (int) The maximum number of active connections to the
database that can be allocated at the same time (default:
100).
NOTE — make sure your database is configured to
handle this
number of parallel active connections.

maxlIdle (int) The maximum number of connections that should
be kept
active at all times (default: 50). Idle connections are
checked
periodically (if enabled) and connections that have
been idle
for longer than minEvictableldleTimeMillis will be
released. (also see testWhileldle)

minldle (int) The minimum number of established connections
that
should be kept active at all times (default: 0). The
connection
pool can shrink below this number if validation queries
fail.

max Wait (int) The maximum number of milliseconds that the
service will
wait (when there are no available connections) for a
connection
before throwing an exception (default: 30000, i.e. 30
seconds).

testOnBorrow (boolean) The indication of whether connections will
be
validated before being used by the service. If the
connections

290 fails to validate, it QMﬁfo%peWeath ﬁ‘@%i&e&)ﬂpe

attempt
to borrow another (default: false). NOTE - for a true
value to

3D City Database for CityGML, Release 4.1

4.3.2 Capabilities settings

The capabilities settings define the contents of the capabilities document that is returned by the WES service upon a
GetCapabilities request. The capabilities document is generated dynamically from the contents of the config.xml file
at request time.

Only optional service metadata must be explicitly specified in the config.xml file using the <owsMetadata> child
element of <capabilities> (see the example listing below). All other sections of the capabilities document are populated
automatically from the config.xml file. For example, the set of feature types advertised in the <wfs:FeatureTypeList>
section is derived from the content of the <featureTypes> element (cf. Section 4.3.3).

Note that the metadata is copied to the capabilities document ““as is”. Thus, the WES implementation neither performs
a consistency check nor validates the provided metadata.

Listing 4.2: Service metadata settings in the WFS config.xml file.

<capabilities>
<owsMetadata>
<ows:Serviceldentification>
<ows:Title>3D City Database Web Feature Service</ows:Title>
<ows: ServiceType>WFS</ows:ServiceType>
<ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>
</ows:Serviceldentification>
<ows:ServiceProvider>
<ows :ProviderName/>
<ows:ServiceContact/>
</ows:ServiceProvider>
</owsMetadata>
</capabilities>

The operations settings are used to define the Service metadata comprises, for example, information about the service
itself that might be useful in machine-to-machine communication or for display to a human. Such information is an-
nounced through the <ows:Serviceldentifikation> child element. In contrast, the child element <ows:ServiceProvider>
contains information about the service provider such as contact information. Please refer to the OGC Web Services
Common Specification (OGC 06-121r3:2009) to get an overview of the supported metadata fields that may be included
in the capabilities document and therefore can be specified in <owsMetadata>.

Note: Service metadata is optional and therefore does not have to be included in the config.xml file. Simply provide no
content for the <capabilities> element or omit it completely. In both cases, the capabilities document will nevertheless
be generated dynamically.

Note: The 3DCityDB WFS implementation supports both versions 2.0.0 and 2.0.2 of the WFS specification. A list
of <ows:ServiceTypeVersion> elements is used to denote which versions are offered to clients. The default config.xml
only uses version 2.0.0 because many WFS clients still have issues with correctly handling version 2.0.2.

4.3.3 Feature type settings

With the feature type settings, you can control which feature types can be queried from the 3D City Database and are
served through the WFS interface. Every feature type that shall be advertised to a client must be explicitly listed in the
config.xml file.

An example of the corresponding <featureTypes> XML element is shown below. In this example, CityGML Building
and Road objects are available from the WES service. In addition, a third feature type IndustrialBuilding coming from

4.3. Configuring the Web Feature Service 291

3D City Database for CityGML, Release 4.1

a CityGML ADE is advertised.

Listing 4.3: Advertised feature types in the WFS config.xml file.

<featureTypes>
<featureType>
<name>Building</name>
<ows :WGS84BoundingBox>
<ows :LowerCorner>-180 -90</ows:LowerCorner>
<ows :UpperCorner>180 90</ows:UpperCorner>
</ows :WGS84BoundingBox>
</featureType>
<featureType>
<name>Road</name>
<ows :WGS84BoundingBox>
<ows : LowerCorner>-180 -90</ows:LowerCorner>
<ows :UpperCorner>180 90</ows:UpperCorner>
</ows : WGS84BoundingBox>
</featureType>
<adeFeatureType>
<name namespaceURI="http://www.citygml.org/ade/TestADE/1.0">IndustrialBuilding</
—name>
<ows :WGS84BoundingBox>
<ows :LowerCorner>-180 -90</ows:LowerCorner>
<ows :UpperCorner>180 90</ows:UpperCorner>
</ows :WGS84BoundingBox>
</adeFeatureType>
<version isDefault="true">2.0</version>
<version>1.0</version>
</featureTypes>

The <featureTypes> element contains one <featureType> node per feature type to be advertised. The feature type
is specified through the mandatory name property, which can only take values from a fixed list that enumerates the
names of the CityGML top-level features (cf. config.xsd schema file). In addition, the geographic region covered by
all instances of this feature type in the 3D City Database can optionally be announced as bounding box (lower left and
upper right corner). The coordinate values must be given in WGS 84.

Note: The bounding box is not automatically checked against or computed from the database, but rather copied to
the WES capabilities document “as is”.

Feature types coming from a CityGML ADE are advertised using the <adeFeatureType> element. In contrast to
CityGML feature types, the name property must additionally contain the globally unique XML namespace URI of
the CityGML ADE, and the type name is not restricted to a fixed enumeration. Note that a corresponding ADE
extension must be installed for the WFS service, and that the ADE extension must add support for the advertised ADE
feature type. Otherwise, the ADE feature type is ignored. If you do not have ADE extensions, then simply skip the
<adeFeatureType> element.

Besides the list of advertised feature types, also the CityGML version to be used for encoding features in a response to
a client’s request has to be specified. Use the <version> element for this purpose, which takes either 2.0 (for CityGML
2.0) or 1.0 (for CityGML 1.0) as value. If both versions shall be supported, simply use two <version> elements.
However, in this case, you should define the default version to be used by the WES by setting the isDefault attribute to
true on one of the elements (otherwise, CityGML 2.0 will be the default).

292 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

4.3.4 Operations settings
The operations settings are used to define the operation-specific behavior of the WFS.

Listing 4.4: Operations settings in the WFS config.xml file.

<operations>
<requestEncoding>
<method>KVP+XML</method>
<useXMLValidation>true</useXMLValidation>
</requestEncoding>
<exportCityDBMetadata>false</exportCityDBMetadata>
<GetFeature>
<outputFormats>
<outputFormat name="application/gml+xml; version=3.1"/>
<outputFormat name="application/json"/>
</outputFormats>
</GetFeature>
</operations>

The <requestEncoding> element determines whether the WFS shall support XML-encoded and/or KVP-encoded re-
quests. The desired method is chosen using the <method> child element that accepts the values “KVP”, “XML” and
“KVP+XML” (default: KVP+XML). When setting the <useXMLValidation> child element to true, all XML encoded
operation requests sent to the WES are first validated against the WFS and CityGML XML schemas. Requests that
violate the schemas are not processed but instead a corresponding error message is sent back to the client. Although
XML validation might take some milliseconds, it is highly recommended to always set this option to true to avoid
unexpected failures due to XML issues.

With this version of the WFS interface, the only operation that can be further configured is the <GetFeature> operation.
You can choose the available output formats that can be used in encoding the response to the client. The value
“application/gml+xml; version=3.1" is the default and basically means that the response to a GetFeature operation will
be purely XML-encoded (using CityGML as encoding format with the version specified in the feature type settings,
cf. Section 4.3.3). In addition, the WES can advertise the output format “application/json”. In this case, the response
is delivered in CityJSON format. CityJSON is a JSON-based encoding of a subset of the CityGML data model. The
3DCityDB WES supports version 0.6 of CityJSON. Note that the format is still under development.

Note: The WFS can only advertise the different output formats in the capabilities document. It is up to the client
though to choose one of these output formats when requesting feature data from the WFS.

4.3.5 Postprocessing settings

The postprocessing settings allow for specifying XSLT transformations that are applied on the CityGML data of a
WES response before sending the response to the client.

Listing 4.5: Postprocessing settings in the WFS config.xml file.

<postProcessing>
<xslTransformation isEnabled="true">
<stylesheet>AdV-coordinates—formatter.xsl</stylesheet>
</xslTransformation>
</postProcessing>

To enable transformations, set the isEnabled attribute on the <xslTransformation> child element to true. In addition,
provide one or more <stylesheet> elements enumerating the XSLT stylesheets that shall be applied in the transforma-

4.3. Configuring the Web Feature Service 293

http://www.cityjson.org

3D City Database for CityGML, Release 4.1

tion. The stylesheets are supposed to be stored in the xslt-stylesheets subfolder of the WEB-INF folder of your WFS
application. Thus, any relative path provided as <stylesheet> will be resolved against WEB-INF/xslt-stylesheets/. You
may alternatively provide an absolute path pointing to another location in your local file system. However, note that
the WFS web application must have appropriate access rights to this location.

If you provide more than one XSLT stylesheet, then the stylesheets are executed in the given sequence of the
<stylesheet> elements, with the output of a stylesheet being the input for its direct successor.

Note: To be able to handle arbitrarily large exports, the WFS process reads single top-level features from the database,
which are then written to the response stream. Each XSLT stylesheet will hence just work on individual top-level
features but not on the entire response.

Note: The output of each XSLT stylesheet must again be a valid CityGML structure.

Note: Only stylesheets written in the XSLT language version 1.0 are supported.

4.3.6 Server settings
Server-specific settings are available through the <server> element in the config.xml file.

Listing 4.6: Server settings in the WFS config.xml file.

<server>
<externalServiceURL>http://yourserver.org/citydb-wfs</externalServiceURL>
<maxParallelRequests>30</maxParallelRequests>
<waitTimeout>60</waitTimeout>
<enableCORS>true</enableCORS>

</server>

The external service URL of the WFS can be denoted using the <externalServicelURL> element. The URL should
include the protocol (typically http or https), the server name and the full context path where the service is available
for clients. Also announce the port on which the service listens if it is not equal to the default port associated with the
given protocol.

Note: The service URL is not configured through <externalServicetURL>. It rather follows from your servlet
container settings and network access settings (e.g., if your servlet container is behind a reverse proxy). The <exter-
nalServiceURL> value is only used in the capabilities document and thus announced to a client. Most clients rely
on the service URL in the capabilities document and will send requests to this URL. So, make sure that the WEFS is
available at the <externalServiceURL> provided in the config.xml.

The <maxParallelRequests> value defines how many requests will be handled by the WES service at the same time
(default: 30). If the number of parallel requests exceeds the given limit, then new requests are blocked until active
requests have been fully processed and the total number of active requests has fallen below the limit.

Note: Every WFS can only open a maximum number of physical connections to the database system running the
3D City Database instance. This upper limit is set through the maxActive attribute on the <connection> element (cf.
Section 4.3.1). Since every request may use more than one connection, make sure that the total number of parallel

294 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

requests is below the maximum number of physical connections.

In case an incoming request is blocked because the maximum number of parallel requests has been reached, the
<waitTimeout> option lets you specify the maximum time in seconds the WFS service waits for a free request slot
before sending an error message to the client (default: 60 seconds).

The flag <enableCORS> (default: true) allows for enabling Cross-Origin Resource Sharing (CORS). Usually, the
Same-Origin-Policy (SOP) forbids a client to send Cross-Origin requests. If CORS is enabled, the WFES server sends
the HTTP header Access-Control-Allow-Origin with the value * in the response.

4.3.7 Cache settings

When exporting data, the WFS must keep track of various temporary information. For instance, when resolving
XLinks, the gml:id values as well as additional information about the related features and geometries must be available.
This information is kept in main memory for performance. However, when memory limits are reached, the cache is
written to temporary tables in the database.

Per default, temporary tables are created in the 3D City Database instance itself. The tables are populated during
the export operation and are automatically dropped after the operation has finished. Alternatively, the cache settings
available through the <uidCache> element let a user choose to store the temporary information in the local file system
instead.

Listing 4.7: Cache settings in the WFS config.xml file.

<uidCache>
<mode>local</mode>
</uidCache>

The <mode> property allows for switching between database cache (default) and local cache. Some reasons for using
a local, file-based storage are:

» The 3D City Database instance is kept clean from any additional (temporary) table.

* If the Importer/Exporter runs on a different machine than the 3D City Database instance, sending temporary
information over the network might be slow. In such cases, using a local storage might help to increase perfor-
mance.

4.3.8 Constraints settings
The <constraints> element of the config.xml allows for defining constraints on dedicated WFS operations.

Listing 4.8: Security settings in the WFS config.xml file.

<constraints>
<countDefault>10</countDefault>
<stripGeometry>false</stripGeometry>
<lodFilter mode="and" searchMode="depth" searchDepth="2">
<lod>2</lod>
<lod>3</lod>
</lodFilter>
</constraints>

The <countDefault> constraint restricts the number of city objects to be returned by the WFS to the user-defined value,
even if the request is satisfied by more city objects in the 3D City Database. The default behavior is to return all city

4.3. Configuring the Web Feature Service 295

3D City Database for CityGML, Release 4.1

objects matching a request. If a maximum count limit is defined, then this limit is automatically advertised in the
server’s capabilities document using the CountDefault constraint.

When setting <stripGeometry> to true (default: false), the WES will remove all spatial properties from a city object
before returning the city object to the client. Thus, the client will not receive any geometry values.

The <lodFilter> constraint defines a server-side filter on the LoD representations of the city objects. When using this
constraint, city objects in a response document will only contain those LoD levels that are enumerated using one or
more <lod> child elements of <lodFilter>. Further LoD representations of a city object, if any, are automatically
removed. If a city object satisfies a query but does not have a geometry representation in at least one of the specified
LoD levels, it will be skipped from the response document and thus not returned to the client.

The default behavior of the LoD filter can be adapted using attributes on the <lodFilter> element. The mode attribute
defines whether a city object must have a spatial representation in all (“and”) or just one (“or”) of the provided LoD
levels. If setting searchMode to “depth”, then you can use the additional searchDepth attribute to specify how many
levels of nested city objects shall be considered when searching for matching LoD representations. If searchMode is
set to “all”, then all nested city objects will be considered.

Note: The constraint settings in config.xml do not replace a real security layer on user, database or network level.
So, it is your responsibility to take any reasonable physical, technical and administrative measures to secure the WFS
service and the access to the 3D City Database.

4.3.9 Logging settings

The WES service logs messages and errors that occur during operations to a dedicated log file. Entries in the log file
are associated with a timestamp, the severity of the event and the IP address of the client (if available). Per default, the
log is stored in the file WEB-INF/wfs.log within the application folder of the WES web application.

The <logging> element in the config.xml file is used to adapt these default settings. The attribute logLevel on the
<file> child element lets you change the severity level for log messages to debug, info, warn, or error (default: info).
Additionally, you can provide an alternative absolute path and filename where to store the log messages.

Note: A web application typically has limited access to the file system for security reasons. Thus, make sure that the
log file is accessible for the WFS web application. Check the documentation of your servlet container for details.

If you want log messages to be additionally printed to the console, then simply include the <console> child element
as well. The <console> element also provides a logLevel attribute to define the severity level.

Listing 4.9: Logging settings in the WFS config.xml file.

<logging>
<console logLevel="info"/>
<file loglLevel="info">
<fileName>path/to/your/wfs.log</fileName>
</file>
</logging>

Note: Log messages are continuously written to the same log file. The WES application does not include any
mechanism to truncate or rotate the log file in case the file size grows over a certain limit. So make sure you configure
log rotation on your server.

296 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

4.4 Functionality

The Web Feature Service is implemented against version 2.0 of the OGC Web Feature Service Interface Standard.
Previous versions are not supported any more, and clients must make sure to use this version of the interface when
sending requests to the WFS service.

The following chapters provide a documentation of the functionality offered by the 3D City Database Web Feature
Service. They do not provide a general overview or description of the OGC Web Feature Service Interface Standard
itself. If you need more general information about WES, please refer to the WES specification document instead (OGC
Doc. No. 09-025r2).

4.4.1 Basic functionality

4.4.1.1 WFS operations

The OGC WEFS 2.0 interface defines eleven operations that can be invoked by a client. A WFS server is not required
to offer all operations to conform to the standard but may support a subset only. For this purpose, the WFS standard
defines conformance classes named Simple WFS, Basic WFS, Transactional WFS and Locking WF'S that grow in the
number of mandatory operations. The current version of the 3D City Database Web Feature Service implements
the Simple WF'S conformance class. Thus, it is fully OGC conformant but lacks operations from other conformance
classes. It is planned to incrementally increase the functionality of the WFS in future releases.

The following table lists all WFS 2.0 operations and marks those supported by the 3D City Database WFS.

4.4. Functionality 297

3D City Database for CityGML, Release 4.1

Table 4.2: Overview of supported WFS 2.0 operations.

Operation Description Supported
GetCapabilities The GetCapabilities operation X
generates a service
metadata document describing the
WES service
provided by a server.
DescribeFeatureType The DescribeFeatureType operation | X
returns a
schema description of the CityGML
feature types
offered by the WFS instance.
ListStoredQueries The ListStoredQueries operation X
lists the stored
queries available at the server.
DescribeStoredQuery The DescribeStoredQueries X
operation provides
detailed metadata about each stored
query expression
that the server offers.
GetFeature The GetFeature operation returnsa | X
selection of
CityGML features from the 3D
City Database using a
query expression.
GetProperty Value The GetProperty Value operation -
allows the value of a
feature property or part of the value
of a complex
feature property to be retrieved
from the 3D City
Database for a set of features
identified using a query
expression.
298 Chapter 4. Web Feature Service
LockFeature The LockFeature operation is used | ~

to expose a long-
term feature locking mechanism to

3D City Database for CityGML, Release 4.1

4.4.1.2 Service URL

The service URL or service endpoint is the location where the 3D City Database WES can be accessed by a client
application over a local network or the internet. This URL is typically composed as follows:

http([s]://[host] [:port]/[context_path]/wfs

The actual URL depends on the servlet container and your network configuration. Please ask your network adminis-
trator for the protocol (typically http or https), the host name and the port of the server. The context path is typically
added to the URL by the servlet container. Please refer to the documentation of your servlet container for more infor-
mation. The last component wfs of the URL identifies the service and makes sure that requests are routed to the WFS
service implementation.

Note: For Apache Tomcat, the name of the WFS WAR file will be used as context path in the service URL. For
example, if the WAR file is named citydb-wfs.war, then the service URL will be http[s]://[host] [:port]/
citydb-wfs/wfs. To pick a different context path, simply rename the WAR file or change Tomcat’s default
behavior.

4.4.1.3 Service bindings

A service binding refers to the communication protocol that shall be used for exchanging request and response mes-
sages between a WES server and a client. The WES 2.0 interface standard defines HTTP GET, HITP POST and SOAP
over HTTP POST as possible service bindings for WFS 2.0 implementations.

The 3D City Database WFS implements both the HTTP POST and the HTTP GET conformance class. Therefore, a
client can choose to send a request either XML-encoded using the HTTP method POST (using text/xml as content
type) or KVP-encoded (key-value-pair) using the HTTP method GET. Note that the XML content of POST messages
sent to the server must be well-formed and valid with respect to the WES 2.0 XML Schema

The following table summarizes the operations and the supported service binding as offered by the 3D City Database
WES.

Table 4.3: Service bindings for the supported WES 2.0 operations.

Operation Service Binding

GetCapabilities XML over HTTP POST and KVP over HTTP GET
DescribeFeatureType XML over HTTP POST and KVP over HTTP GET
ListStoredQueries XML over HTTP POST and KVP over HTTP GET
DescribeStoredQuery XML over HTTP POST and KVP over HTTP GET

4.4. Functionality 299

http://schemas.opengis.net/wfs/2.0/wfs.xsd

3D City Database for CityGML, Release 4.1

4.4.1.4 CityGML feature types

The 3D City Database WES supports all CityGML top-level feature types, and corresponding feature instances will be
sent to the client upon request. If you just want to advertise a subset of the CityGML feature types, you can restrict
the feature types in the config.xml settings (cf. Section 4.3.3). In addition to the predefined CityGML feature types,
the WFS can also support feature types defined in a CityGML ADE. This requires a corresponding ADE extension to
be installed for the WFS and to be registered with the 3DCityDB instance.

Note: Appearance* properties of CityGML features such as textures or color information are currently not supported
by the WFS implementation and thus will not be included in a response document.

The supported CityGML feature types together with their official XML namespaces (CityGML version 2.0 and 1.0)
are listed in the table below.

300 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

Table 4.4: Supported CityGML top-level feature types together with their

XML namespace.
Feature type XML namespace
Building http://www.opengis.net/citygml/building/2.0
http://www.opengis.net/citygml/building/1.0
Bridge http://www.opengis.net/citygml/bridge/2.0
Tunnel http://www.opengis.net/citygml/tunnel/2.0

TransportationComplex

http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

Road http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
Track http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
Road http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
Square http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
Railway http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
CityFurniture http://www.opengis.net/citygml/cityfurniture/2.0
http://www.opengis.net/citygml/cityfurniture/1.0
LandUse http://www.opengis.net/citygml/landuse/2.0

http://www.opengis.net/citygml/landuse/1.0

4.4. Functionality
lity

WaterBody

http://www.opengis.net/citygml/waterbody/2.0
http://www.opengis.net/citygml/waterbody/1.0

http://www.opengis.net/citygml/building/2.0
http://www.opengis.net/citygml/building/1.0
http://www.opengis.net/citygml/bridge/2.0
http://www.opengis.net/citygml/tunnel/2.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0
http://www.opengis.net/citygml/cityfurniture/2.0
http://www.opengis.net/citygml/cityfurniture/1.0
http://www.opengis.net/citygml/landuse/2.0
http://www.opengis.net/citygml/landuse/1.0
http://www.opengis.net/citygml/waterbody/2.0
http://www.opengis.net/citygml/waterbody/1.0
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/1.0
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/1.0
http://www.opengis.net/citygml/relief/2.0
http://www.opengis.net/citygml/relief/1.0
http://www.opengis.net/citygml/generics/2.0
http://www.opengis.net/citygml/generics/1.0
http://www.opengis.net/citygml/cityobjectgroup/2.0
http://www.opengis.net/citygml/cityobjectgroup/1.0

3D City Database for CityGML, Release 4.1

4.4.1.5 Exception reports

If the WES encounters an error while parsing or processing a request, an XML document indicating that error is
generated and sent to the client as exception response. Please refer to the WFS 2.0 specification for the structure and
syntax of the exception response.

4.4.2 GetCapabilities operation

The GetCapabilities operation generates an XML-encoded service metadata document describing the WFS service
provided by a server. The capabilities document contains relevant technical and non-technical information about the
service and its provider. Its content mainly depends on the configuration of the WFS in the config.xml settings file (if
created dynamically).

The following XML snippet shows an XML encoding of a GetCapabilities operation.

Listing 4.10: Example GetCapabilities operation.

<?xml version="1.0" encoding="UTF-8"?>

<wfs:GetCapabilities service="WES"
xmlns:wfs="http://www.opengis.net/wfs/2.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.opengis.net/wfs/2.0
http://schemas.opengis.net/wfs/2.0/wfs.xsd"/>

The declaration of the WFS XML namespace http://www.opengis.net/wfs/2.0 is mandatory to be able to validate
the request against the official WFS XML Schema definition. The reference to the schema location using the
xsi:schemalocation attribute is however optional. It is recommended though if the XML encoding of the request
is created manually by the user (and not automatically by a client software) to ensure schema validity. Per default, the
WES service will reject invalid requests (see Section 4.3.4).

The following table shows the XML attributes that can be used in the GetCapabilities request and are supported by the
WES implementation.

Table 4.5: Supported XML attributes of a GetCapabilities operation. (O
= optional, M = mandatory)

XML attribute O/M Default value Description

service M WES (fixed) The service attribute
indicates the

service type. The value
“WFS” is fixed.

As alternative to XML encoding, the GetCapabilities operation may also be invoked through a KVP-encoded HTTP
GET request.

http[s]://[host] [:port]/[context_path]/wfs?
SERVICE=WFS&

REQUEST=GetCapabilitiesé&
ACCEPTVERSIONS=2.0.0,2.0.2

302 Chapter 4. Web Feature Service

http://www.opengis.net/wfs/2.0

3D City Database for CityGML, Release 4.1

The SERVICE parameter is also mandatory for the KVP-encoded request. In addition, the ACCEPTVERSIONS
parameter can be used for version number negotiation with the WES server (cf. OGC Document No. 06-121r3:2009,
Section 4.3.2).

4.4.3 DescribeFeatureType operation

The DescribeFeatureType operation returns an XML Schema description of the CityGML feature types advertised by
the 3D City Database WFS instance. Which feature types are offered by the WFS is controlled through the config.xml
settings file (cf. Section 4.4.1.4). The XML Schema defines the structure and content of the features (thematic and
spatial attributes, nested features, etc.) as well as the way how features are encoded in responses to GetFeature requests.

The following example shows a valid DescribeFeatureType operation requesting the XML Schema definition of the
CityGML 1.0 Building feature type.

Listing 4.11: Example DescribeFeatureType operation.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:DescribeFeatureType service="WES" version="2.0.0"
xmlns:wfs="http://www.opengis.net/wfs/2.0"
xmlns:bldg="http://www.opengis.net/citygml/building/1.0">
<wfs:TypeName>bldg:Building</wfs:TypeName>
</wfs:DescribeFeatureType>

The DescribeFeatureType operations takes the following XML attributes.

4.4. Functionality 303

3D City Database for CityGML, Release 4.1

Table 4.6: Supported XML attributes of a DescribeFeatureType opera-
tion. (O = optional, M = mandatory)

XML attribute 0O/M Default value Description

service M WES (fixed) The service attribute
indicates the

service type. The value
“WEFS” is fixed.

version M 2.0.x The version of the WFS
Interface

Standard to be used in the
communication.

outputFormat o application/gml+xml; Controls the format of the

version=3.1 schema
description. Currently, the
default value

is the only option and
results in a

CityGML / GML 3.1.1
application
schema.

handle o The handle parameter
allows a client to

associate a mnemonic
name with the

request that will be used
in exception

reports.

The <wfs:TypeName> child element of the DescribeFeatureType operation identifies the feature type for which the
XML Schema description is requested. Be careful to use the correct spelling of the feature type name (as specified by
the CityGML standard) and to associate the name with the correct CityGML XML namespace. The <wfs:TypeName>
element may occur multiple times to request schema definitions of several feature types in a single DescribeFeature-
Type operation. If the <wfs:TypeName> element is omitted, then the CityGML base schema is returned by the WFS.

The DescribeFeatureType operation can alternatively be invoked through HTTP GET with key-value pairs.

http([s]://[host] [:port]/[context_path]/wfs?
SERVICE=WFS&

(continues on next page)

304 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

(continued from previous page)

VERSION=2.0.2&
REQUEST=DescribeFeatureType&
TYPENAME=t ran:Road

The following KVP parameters are supported.

Table 4.7: Supported KVP parameters of a DescribeFeatureType opera-
tion. (O = optional, M = mandatory)

XML attribute 0o/M Default value Description
SERVICE M WES (fixed) see above
VERSION M 2.0.x see above
NAMESPACES o Used to specify

namespaces and their

prefixes. The format shall
be

xmlns(prefix,escaped_url).

TYPENAME M A comma-separated list
of feature types

to describe.

OUTPUTFORMAT (0] application/gml+xml; see above
version=3.1

The TYPENAME attribute lists the feature types to describe. Like an XML-encoded request, both the feature type
names and the XML namespaces must be correct. XML namespaces and their prefixes can be specified using the
NAMESPACES attribute. However, the 3DCityDB WEFS can correctly deal with the default CityGML prefixes. An
additional definition via the NAMESPACES attribute is therefore obsolet when using the default prefixes (see example
above).

4.4.4 ListStoredQueries operation

Since version 2.0 of the WFS standard, a WFS server is supposed to manage predefined and parameterized feature
query expressions (so called stored queries) that are stored by the server and that can be repeatedly invoked by the
client using different parameter values. Stored queries hide the complexity of the underlying query expression from

4.4. Functionality 305

3D City Database for CityGML, Release 4.1

the client since all the client needs to know is the unique identifier of the stored query as well as the names and types
of the parameters in order to invoke the operation.

The ListStoredQuery operation is meant to provide the list of stored queries that is offered by the WFS server. The
response document contains the unique identifier for each stored query which can then be used in a subsequent De-
scribeStoredQuery operation to receive the details of a specific stored query form the WFS server. The following
listing presents an example ListStoredQuery operation.

Listing 4.12: Example ListStoredQuery operation.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:ListStoredQueries service="WFS" version="2.0.0"
xmlns:wfs="http://www.opengis.net/wfs/2.0"/>

The ListStoredQuery operation may take the following XML attributes as parameters.

Table 4.8: Supported XML attributes of a ListStoredQuery operation. (O
= optional, M = mandatory)

XML attribute Oo/M Default value Description

service M WES (fixed) The service attribute
indicates the

service type. The value
“WEFS” is fixed.

version M 2.0.x The service attribute
indicates the

The version of the WES
Interface

Standard to be used in the
communication.

handle (0] The handle parameter
allows a client to

associate a mnemonic
name with the

request that will be used
1n exception

reports.

The corresponding KVP-encoded request is shown below.

http([s]://[host] [:port]/[context_path]/wfs?
SERVICE=WEFS&

VERSION=2.0.0¢&

REQUEST=ListStoredQueries

306 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

The following KVP parameters can be used when invoking the ListStoredQueries operation.

Table 4.9: Supported KVP parameters of a ListStoredQuery operation.
(O = optional, M = mandatory)

XML attribute 0O/M Default value Description
SERVICE M WES (fixed) see above
VERSION M 2.0.x see above

4.4.5 DescribeStoredQuery operation

The DescribeStoredQuery operation is used to provide the details of one or more stored queries offered by the server.
The following listing exemplifies a DescribeStoredQuery request.

Listing 4.13: Example DescribeStoredQuery operation.

<?xml version="1.0" encoding="UTF-8"?>

<wfs:DescribeStoredQueries service="WFS" version="2.0.0"
xmlns:wfs="http://www.opengis.net/wfs/2.0">
<wfs:StoredQueryId>http://www.opengis.net/def/query/OGC-WFS/0/GetFeatureById</
—wfs:StoredQueryId>

</wfs:DescribeStoredQueries>

The <wfs:StoredQueryld> child element provides the unique identifier of the stored query (see ListStoredQuery op-
eration in Section 4.4.4). By providing more than on unique identifier through multiple <wfs:StoredQueryld> ele-
ments, the descriptions of separate stored queries can be requested in a single DescribeStoredQuery operation. If the
<wfs:StoredQueryld> element is omitted, a description of all stored queries available at the WFS server is returned to
the client. The above request will produce a response similar to the following listing.

Listing 4.14: Example response to a DescribeStoredQuery request.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<wfs:DescribeStoredQueriesResponse
xmlns: fes="http://www.opengis.net/fes/2.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:wfs="http://www.opengis.net/wfs/2.0">
<wfs:StoredQueryDescription id="http://www.opengis.net/def/query/0OGC-WES/0/
—GetFeatureById">
<wfs:Title xml:lang="en">Get feature by identifier</wfs:Title>
<wfs:Abstract xml:lang="en">Retrieves a feature by its gml:id.</wfs:Abstract>
<wfs:Parameter name="id" type="xs:string">
<wfs:Title xml:lang="en">Identifier</wfs:Title>
<wfs:Abstract xml:lang="en">The gml:id of the feature to be retrieved.</
—wfs:Abstract>
</wfs:Parameter>
<wfs:QueryExpressionText returnFeatureTypes=""
language="urn:ogc:def:queryLanguage:O0GC-WFS: :WFS_QueryExpression"

(continues on next page)

4.4. Functionality 307

3D City Database for CityGML, Release 4.1

(continued from previous page)

isPrivate="false">
<wfs:Query typeNames="schema-element (core:_CityObject) ">
<fes:Filter>
<fes:ResourcelId rid="s${id}"/>
</fes:Filter>
</wfs:Query>
</wfs:QueryExpressionText>
</wfs:StoredQueryDescription>
</wfs:DescribeStoredQueriesResponse>

Every WFS implementation must at minimum offer the GetFeatureByld stored query having the unique identifier
http:/fwww.opengis.net/def/query/OGC-WFS/0/GetFeatureByld as shown above. This stored query takes a single pa-
rameter id of type xs:string and returns zero or exactly one feature whose resource identifier matches the id value. For
the 3D City Database WFS, the id value is evaluated against the gml:id of each feature in the database to find a match.

The returnFeatureTypes attribute lists the feature types that may be returned by a stored query. Note that this string
is empty for the the GetFeatureByld query. Consequently, the query will return a feature instance of all advertised
feature types if its gml:id matches. The set of advertised feature types can be influenced in the config.xml settings file.
The DescribeStoredQuery operation allows the following XML attributes.

Table 4.10: Supported XML attributes of a DescribeStoredQuery opera-
tion. (O = optional, M = mandatory)

XML attribute 0O/M Default value Description

service M WES (fixed) The service attribute
indicates the

service type. The value
“WFS” is fixed.

version M 2.0.x The version of the WFS
Interface

Standard to be used in the
communication.

handle o The handle parameter
allows a client to

associate a mnemonic
name with the

request that will be used
1n exception

reports.

A KVP-encoded DescribeStoredQueries request is shown below.

308 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

http([s]://[host] [:port]/[context_path]/wfs?

SERVICE=WEFS&

VERSION=2.0.2&

REQUEST=DescribeStoredQueriesé&
STOREDQUERY_ID=http%3A%2F%2Fwww.opengis.net%2Fdef%$2Fquery%$2FOGC-WEFS%$2F0
—%2FGetFeatureById

The supported KVP parameters are listed in the following table.

Table 4.11: Supported KVP parameters of a DescribeStoredQuery oper-
ation. (O = optional, M = mandatory)

XML attribute OoO/M Default value Description

SERVICE M WES (fixed) see above

VERSION M 2.0.x see above

STOREDQUERY_ID O A comma-separated list
of stored query
identifiers to describe.

4.4.6 GetFeature operation

The GetFeature operation lets a client query CityGML features from the 3D City Database. The Simple WFS con-
formance class only mandates WFS server implementations to support GetFeature queries that use the predefined
stored query GetFeatureByld as query expression and filter criteria. For this reason, the current version of the 3D City
Database WFS handles GetFeatureByld queries but no ad-hoc queries. The GetFeature support will be extended in
future releases.

A valid GetFeature operation is shown below. The gml:id of the city object that shall be returned by the WES is passed
as parameter to the GetFeatureByld stored query.

Listing 4.15: Example GetFeature operation.

<?xml version="1.0" encoding="UTEF-8"?>
<wfs:GetFeature service="WES" version="2.0.0"
xmlns:wfs="http://www.opengis.net/wfs/2.0">
<wfs:StoredQuery id="http://www.opengis.net/def/query/OGC-WFS/0/GetFeatureById">
<wfs:Parameter name="id">ID_0815</wfs:Parameter>
</wfs:StoredQuery>
</wfs:GetFeature>

The WES will answer the above request with either the CityGML city object(s) whose gml:id value matches ID_0815
or with an exception report in case no matching city object was found in the 3D City Database.

A single GetFeature operation can also be used to request more than one feature.

4.4. Functionality 309

3D City Database for CityGML, Release 4.1

Listing 4.16: Example GetFeature operation requesting for two city ob-
jects.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:GetFeature service="WFS" version="2.0.0"
xmlns:wfs="http://www.opengis.net/wfs/2.0">
<wfs:StoredQuery id="urn:ogc:def:query:0GC-WES: :GetFeatureById">
<wfs:Parameter name="id">first gml:id</wfs:Parameter>
</wfs:StoredQuery>
<wfs:StoredQuery id="urn:ogc:def:query:0GC-WES: :GetFeatureById">
<wfs:Parameter name="id">second gml:id</wfs:Parameter>
</wfs:StoredQuery>
</wfs:GetFeature>

If a GetFeature request results in more than one city objects or consists of more than one stored query, the response
will be wrapped by one or more <wfs:FeatureCollection> elements. Please refer to the WFS 2.0 specification for
details on the encoding of the response document.

The GetFeature operation can be influenced by the following XML attributes.

310 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

Table 4.12: Supported XML attributes of a GetFeature operation.

optional, M = mandatory)

XML attribute

O/M

Default value

Description

service

WES (fixed)

The service attribute
indicates the

service type. The value
“WES” is fixed.

version

2.0.x

The version of the WFS
Interface

Standard to be used in the
communication.

handle

The handle parameter
allows a client to

associate a mnemonic
name with the

request that will be used
1n exception

reports.

outputFormat

application/gml+xml;
version=3.1

Controls the encoding of
the response.

Per default, the WFS uses
CityGML /

GML 3.1.1. The
outputFormat attribute
may also take the value
“application/json”, in
which case the

response is encoded in
CityJSON.

count

unlimited

The maximum number of
features to be

returned by the WES
service.

resultType

results

If the value of the
resultType parameter

1S-set-to “racyults’ the

4.4. Functionality

HETTO—CHHtHt—HC

server generates a 311

response document
containing features

that satisfv the operation.

3D City Database for CityGML, Release 4.1

A KVP-encoded GetFeature request is shown below.

http[s]://[host] [:port]/[context_path]/wfs?

SERVICE=WFS&

VERSION=2.0.2¢&

REQUEST=GetFeatureé&
STOREDQUERY_ID=http%3A%2F%$2Fwww.opengis.net%$2Fdef%$2Fquery%$2FOGC-WES%2F0
—%2FGetFeatureByIdé&

ID=ID_0815

Note that the last parameter ID in the above request is not a WFS parameter but instead is required by the invoked
stored query (see also Listing 4.15).

The supported KVP parameters are listed in the following table.

312 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

Table 4.13: Supported KVP parameters of a GetFeature operation. (O =

optional, M = mandatory)

XML attribute 0O/M Default value Description
SERVICE M WES (fixed) see above
VERSION M 2.0.x see above
NAMESPACES o Used to specify
namespaces and their
prefixes. The format shall
be
xmlns(prefix,escaped_url).
OUTPUTFORMAT (0] application/gml+xml; see above
version=3.1
COUNT (@) unlimited see above
RESULTTYPE (0] results see above
STOREDQUERY_ID M The identifier of the
stored query to
invoke.
storedquery_parameter O Each parameter of the
=value stored query

shall be encoded in KVP
as key-value

pair.

4.4. Functionality

313

3D City Database for CityGML, Release 4.1

4.5 Web-based WFS client

The 3D City Database WES is shipped with a simple web-based client that is mainly meant to test the functionality
of the server. The client is automatically installed with the server and is available at the following URL (cf. Section
4.4.1.2 for details):

http([s]://[host] [:port]/[context_path]/wfsclient

The screenshot below shows the user interface of the client rendered in a standard web browser.

£ = O | [4 locahesta0s0/ 3datydb-wizfwfscliant/

virtuolcityS¥YSTEMS WFS Client

WFS Request

send

WFS Result

(L) vimaakinySeSTEM S GmbH, 2813

Fig. 4.2: Web-based WES client.

The user interface consists of two text fields. A user simply enters the XML-encoded operation request that shall be
sent to the server into the upper text field named WFS Request [1]. Clicking on the Send button forwards the request
to the server. As soon as the response document is received from the WES server, it is rendered in the lower text field
named WFS Result.

314 Chapter 4. Web Feature Service

3D City Database for CityGML, Release 4.1

Warning: Avoid sending requests through this client that might potentially result in a large number of city
objects contained in the response document. Otherwise the available main memory of the web browser is quickly
exhausted when trying to display the response document, which renders the browser non-responsive or might even

lead to a program crash.

You may want to use the count attribute on the GetFeature request in order to limit the maximum number of features
to be contained in the response document. Alternatively, you can specify the “hits” value for the resultType attribute
in order to only receive the number of features matching your query instead of the features themselves (cf. Section
4.4.6).

APACHE
T The 3D City Database Web Feature Service is free software under the Apache License, Version 2.0.

See the LICENSE.txt file shipped with the software for more details. For a copy of the Apache License, Version 2.0,
please visit http://www.apache.org/licenses/.

4.5. Web-based WFS client 315

http://www.apache.org/licenses/

3D City Database for CityGML, Release 4.1

316 Chapter 4. Web Feature Service

CHAPTER B

3DCityDB-Web-Map-Client

Starting from version 3.3.0, the 3DCityDB software package comes with a software package called 3DCityDB-Web-
Map-Client (in this chapter we simply call it “3D web client”) acting as a web-based front-end for high-performance
3D visualization and interactive exploration of arbitrarily large semantic 3D city models. The 3D web client has been
developed based on the Cesium Virtual Globe, which is an open source JavaScript library developed by Analytical
Graphics, Inc. (AGI). It utilizes HTMLS and the Web Graphics Library (WebGL) as its core for hardware accelera-
tion and provides cross-platform functionalities like displaying 3D graphic contents on the web without the needs of
additional plugins.

While developing the 3D web client, various extensions have been made to the Cesium Virtual Globe in order to
facilitate users to view and explore 3D city models conveniently. The major one among those extensions is that the
KML/gITF models exported using the Import/Export tool can now be directly visualized along with imagery and
terrain layers within a web browser using the 3D web client, which additionally can link the KML/gITF models
with table data exported using the Spreadsheet Generator Plugin (SPSHG) and allows querying the thematic data of
every city object. With this newly introduced 3D web client, the functionalities of the 3DCityDB now range from
high-efficient storage and management of virtual 3D city models according to the CityGML standard up to high-
performance visualization and exploration of them on the web.

5.1 System requirements

Since the 3D web client utilizes the WebGL-based Cesium Virtual Globe as its 3D geo-visualization engine, the
hardware on which the 3D web client will be run must have a graphics card installed that supports WebGL. In addition,
the web browser in use must also provide appropriate WebGL support. You can visit the following website to check
whether your web browser supports WebGL or not:

http://get.webgl.org/

The 3DCityDB-Web-Map-Client has been successfully tested on (but is not limited to) the following web browsers
under different desktop operating systems like Microsoft Windows, Linux, Apple Mac OS X, and even on mobile
operating systems like Android and iOS.

* Apple Safari

317

https://www.agi.com/
https://www.agi.com/

3D City Database for CityGML, Release 4.1

* Mozilla Firefox
* Google Chrome
* Opera

For best viewing and interaction performance, it is recommended to use Google Chrome.

5.1.1 Using the 3D Web Client from the 3DCityDB homepage

If you want to try the 3DCityDB-Web-Map-Client or do not have a possibility to install it on your own web server,
you can use the pre-installed version from the 3DCityDB homepage under the URL

https://www.3dcitydb.org/3dcitydb-web-map/1l.6/3dwebclient/index.html

This is a stable link and can be used for long-time working demo links. If new versions will be released in the future,
the old versions remain functional on the server and the new versions will be installed in new subfolders (i.e. next to
the folder ‘1.6”).

5.2 Installation and configuration

For convenient use, there is an official web link (see the link below) that can be called to directly run the 3D web client
on your web browser.

’https://www.3dcitydb.org/3dcitydbfweb7map/1.6.2/3dwebclient/index.html

Note: The number 1.6.2 in URL denotes the version number of the 3D web client. Once the 3D web client has been
upgraded in the future, this version number will be adapted to conform to the current release of the 3D web client.
Web links pointing to the previous software versions will remain valid and accessible online.

The 3D web client is a static web application purely written in HTML and JavaScript and can therefore be easily
deployed by uploading its files to a simple web server. A zip file for the 3D web client can be found in the installation
directory of the Import/Export tool within the subfolder 3d-web-map-client or downloaded via the following GitHub
link:

https://github.com/3dcitydb/3dcitydb-web-map/releases

The extracted contents of the zip file should look something like the screenshot below.

The 3D web client comes with a lightweight JavaSript-based HTTP server (the file with the name “server”) that is
mainly meant to test the functionality of the 3D web client on your local machine. For running this web server, the
open source JavaScript runtime environment Node.js is required to be installed on your machine. The latest version of
Node.js can be download via the web link below:

’https://nodejs.org/en/

Once the Node.js program has been installed, you need to open a shell environment on your operating system and
navigate to the folder where the server,js file is located, then simply run the following command to launch the server:

’node server. js

Now, the 3D web client is available via the URL below and its user interface should look like in the following figure:

318 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

; Idwebclient

| examples

I s

, node_modules

. theme
. ThirdParty

= build
| | LICENSE
| | README.md

@ server

BN C\Windows\system32\cmd.exe

C:~Cmd>rem Becho off

C:~Cmd>cd CG:sEclipse_ CityGML~3DWehbc lient_YWorkspacesJddcitydb—web—map

C:~Eclipse CityGML~3DWebclient_Workspaces3dcitydb—web—mapinode server.js
Cezium development zerver running publicly. Connect to localhost:3@0A-

Fig. 5.1: Example of running the JavaScript-based web server

5.2. Installation and configuration 319

3D City Database for CityGML, Release 4.1

http://localhost:8000/3dwebclient/index.html

2

Zhihang] = | B
W 2DCityDB-Web-Map-C * 'y

« C [} localhost:8000/3

Show / Hide Toolbox ¥

~ CESIUM E&SDCiWDB b biNG ©2015 Chair of Geonformatics TU Minchen - Image courtesy « ?il:ﬁnbgr of showed hs ,T.:g‘bgr of cached

crosoft Corporation - © 2010 NAVTEQ

Fig. 5.2: User interface of the 3D web client

5.3 Feature overview

Basically, the 3D web client has been developed by extending and customizing the so-called Cesium Viewer which
is a composite widget shipped with Cesium and provides overall functionalities of a 3D globe such as camera control,
rendering geometries and materials, animation etc. In addition, the Cesium Viewer contains a number of especially
attractive widgets and plugins providing functionalities like querying of geocoding service, switching between differ-
ent viewing modes (2D, 2.5D, and 3D view), and handling imagery and terrain layers, which are commonly useful for
a variety of GIS applications. In addition, starting from version 1.6.0, the web client provides better support for mobile
devices, such as a more compact GUI layout as well as the ability to interact with the web map in first-person view
based on the user’s location in real-time. All these functionalities along with the enhanced features and functionalities
developed for the 3D web client are explained in more detail below.

The 3D Globe [1] is a base Cesium widget that allows the user to navigate through the Earth map by panning,
moving, tilting, and rotating the camera perspective using a mouse or touchscreen. In addition, the camera perspective
can also be controlled by means of the Navigation Component [2] which is an open source Cesium plugin
and offers the same navigation possibilities that can be achieved with mouse or touchscreen. It consists of a group
of widgets, namely a Navigator widget for controlling the camera perspective, a North Arrows widget for
orienting the Earth map towards the north, and a Scale Bar for estimating the distance between two points on the
ground.

The Cesium Viewer provides an especially useful built-in Toolkit [3] containing the widgets like Geocoder,
HomeButton, GeolocationButton, BaselayerPicker, and NavigationHelpButton. The view panel

of Geocoder can be expanded by clicking on the button E to display an input filed into which the user can enter
either an explicit position value in the form of “[longitude], [latitude]” or an address name to search a particular

320 Chapter 5. 3DCityDB-Web-Map-Client

https://github.com/alberto-acevedo/cesium-navigation

3D City Database for CityGML, Release 4.1

u 3DCityDE-Web-Map-Che: X

— c @ Sicher | httpsy//www.3dcitydb.org/3ddtydb-web-map/1.6/3dwebclient/index.htm v
P ¥ g 3

AN g
=
NORTH
Pydngyan ;

SOUTH

6 500 km

1?;%;%;?0 u?c Y - - © 2018 Chair of Geoinform: <. ' Number of showed Number of cached
<l 00. . I Auga 201 0 . Tiles- 0 i Tiles: 0

1x

Fig. 5.3: Relevant GUI components of the 3D web client

5.3. Feature overview 321

3D City Database for CityGML, Release 4.1

location. After pressing the “Enter” key on the keyboard or clicking on the button ﬂ, the Geocoding process will be
performed using the Bing Maps Locations API according to the entered location information. Once the target location
has been found, the Earth map will be automatically adjusted to the returned location and zoomed to the bounding box
with the best fit with the camera perspective. For example, if you want to search the position (longitude = 11.56786,
Latitude = 48.14900) where the Technical University of Munich is, the input field of the Geocoder can be filled with
the text value of “11.56786, 48.14900 and the result should look like the following figure.

Techmcai
/ mversrt‘y
/ Munich

Fig. 5.4: Searching the main building of the Technical University of Munich by using the Geocoder widget

The HomeButton E helps the user to quickly reset the camera perspective to the default status (cf. Fig. 5.2).

. , L . . . ,
In addition, the GeolocationButton provides some geolocation-based features such as flying to the user’s
current location on the 3D map and displaying the first-person view in real-time on mobile devices, which is explained
in more details in Section 5.8.

In most GIS applications, the term base layer (or basemap) is generally considered as a background layer on the map
using, for example, satellite imagery and terrain model, to help people to quickly identify the locations and orientations
from a certain camera perspective. Per default, Cesium comes with a number of selectable imagery layers provided by
different mapping services, such as Bing Maps, OpenStreetMap, ESRI Maps etc. In addition, a terrain layer so-called
STK World Terrainis available for showing worldwide 3D elevation data with an average grid resolution of 30 meters.

Note: Due to changes in Cesium Terms of Service as well as the introduction of the new commercial Cesium ion
platform starting from September 1 st 2018, the STK World Terrain layer is replaced by the Cesium World Terrain
hosted by Cesium ion (https://cesium.com/content/cesium-world-terrain).

All these base layers (imagery and terrain layers) can be controlled by the BaseLayerPicker widget (cf. the
following figure) which has a view panel for listing all the available base layers represented by their names and respec-
tive icons and allows the user to select the desired one. For example, when an icon representing the OpenStreetMap
is selected, a new instance of the OpenStreetMap imagery layer will be created to replace the imagery layer that is
currently in use. Similarly, the terrain layer can be independently selected and added to the Earth map to overlap with

322 Chapter 5. 3DCityDB-Web-Map-Client

https://cesium.com/content/cesium-world-terrain

3D City Database for CityGML, Release 4.1

the selected imagery layer.

Show I Hide Toolboe *

Mational
Gengraphic

OpenSinet-
=

Terrain

300 m
N Mumber of showed Number of cached
s Tiles: 0 Tiles: 0

Fig. 5.5: Per default available base layers listed in the BaseLayerPicker widget

n .|Ei1iljf..:-i}>

A

(51313 s
Gelltmpron Usons

r e e B R T S I THOH IR A -

The last widget contained within the Cesium Toolkit [3] (cf. Fig. 5.3) is the so-called Navigat ionHelpButton
for showing brief instructions on how to navigate the Earth map with mouse (typically for desktop and laptop PCs)

and touchscreen (typically for smart phones and tablet PCs). By clicking on the L4 button, the corresponding view
panel (cf. the following figure) will be shown on the upper-right corner of the 3D web client.

The next widget is the so-called CreditContainer [4] (cf. Fig. 5.3) which displays a collection of credits with
respect to the software and data providers that have been involved in the development and use of the 3D web client.
These credits mainly include the mapping services (depending on the selected base layer, e.g. Bing Maps), the 3D
geo-visualization engine (Cesium Virtual Globe), and the development provider of the 3D web client (3DCityDB),
which are all represented with their icons, descriptions, and hyperlinks referencing to their respective homepages.

The majority of the functionalities specially provided by the 3D web client are controlled by the Toolbox widget [5]
(cf. Fig. 5.3) which is an extended module based on the Cesium Viewer for integrating and controlling the user-
provided data in different formats, namely KML/gITF modes, thematic data (online spreadsheet), Web Map Service
(WMS) data, and digital terrain model (DTM) on the one hand. On the other hand, the user interaction with 3D city
models can also be aided by this Toolbox widget which allows, for example, deselecting, shadowing, hiding and
showing 3D objects, as well as exploring them from different view perspectives using third-party mapping services

5.3. Feature overview 323

3D City Database for CityGML, Release 4.1

Pan view
Left click + drar

Zoom view
Right click + drag, or
Mouse wheel scroll+

Rotate view c
Middle click + drag_or
CTRL + Lefi/Right click
+ drag

200 km

NCE—"TEJM R mb.bmgmk infarmaties TU Minchen - £ %gm&ﬂ of showed %&"L‘E" of cached
SI0 - limmge. Foirlesy of NASA SB201B nte mup . v L :

Fig. 5.6: The NavigationHelpButton widget showing the instructions for navigating Earth map

like Microsoft Bing Maps with oblique view, Google Streetview, and a combined version (DualMaps).

Note: Starting from September 2018, a Cesium ion API key or a Bing Maps API key is required in order to pro-
vide access to the Cesium World Terrain as well as the Bing Maps Services. These can be given as the parameter
ionToken=<your_ion_token>and bingToken=<your_bing_token> in the client’s URL. If no valid to-
ken is present, Open Street Map shall be selected as the default imagery and Nominatim shall be activated as the
default geocoder. For more information, please refer to:

* https://cesium.com/legal/terms-of-service/
* https://www.microsoft.com/en-us/maps/product/terms

* https://www.openstreetmap.org/copyright/en

The visualization of the 3D city model with large data size often result in significant performance issue in most 3D
web applications. In order to overcome this troublesome issue, a tiling strategy has been implemented within the 3D
web client to support for efficient displaying of large pre-styled 3D visualization models in the form of tiled datasets
exported from the 3DCityDB by using the KML/COLLADA/gITF Exporter. This tiling strategy utilizes the multi-
threading capabilities of HTMLS, so that the time-costly operations such as parsing of multiple 3D objects can be
delegated to a background thread running in parallel. At the same time, for data layer, another thread monitors the
interactions with the virtual camera and takes care of determining which the data tiles should be loaded and unloaded
according to their current visibility and the display size on the screen. Moreover, this tiling strategy supports caching
mechanism allowing the data tiles loaded from an earlier computation to be temporarily stored in a cache, from which
the data tiles can be loaded and rendered much faster than reloading them again from the remote server. Of course, a
larger number of cached data tiles will consume more memory and may cause a memory overflow of the web browser.
In order to avoid this, the 3D web client provides a so-called Status Indicator widget [6] (cf. Fig. 5.3) which
can display the real-time status of the amount of showed and cached data tiles and can be used to help the user to
conveniently monitor and control the memory consumed by the 3D web client.

324 Chapter 5. 3DCityDB-Web-Map-Client

https://cesium.com/legal/terms-of-service/
https://www.microsoft.com/en-us/maps/product/terms
https://www.openstreetmap.org/copyright/en

3D City Database for CityGML, Release 4.1

While streaming the tiled 3D visualization models, each data tile requires at least an asynchronous HTTP (Hypertext
Transfer Protocol) request (AJAX) to fetch the corresponding KML/gITF files from the remote data server. This server
must support CORS (Cross-Origin Resource Sharing) to get around the cross-domain restrictions.

Note: Alternatively, the open specification Cesium 3D Tiles can also be employed to stream massive heterogeneous
3D geospatial datasets. This is supported in 3DCityDB Web Map Client version 1.6.0 or later.

5.4 Handling KML/gITF models with online spreadsheet

As mentioned before, the 3D web client extends the Cesium Virtual Globe to support efficient displaying, caching,
dynamic loading and unloading of large pre-styled 3D visualization models in the form of tiled KML/gITF datasets
exported the 3DCityDB using the KML/COLLADA/gITF Exporter. However, there is a major problem regarding the
graphical visualization of semantic 3D city models as their attribute information is completely or partly lost in the 3D
graphics formats. This issue has been considered and solved within the 3D web client by supporting the explicit linking
of the 3D visualization models with thematic data which can be exported using the Spreadsheet Generator Plugin
(SPSHG) and uploaded to an online spreadsheet (Google Fusion Table) stored and published via the Google Cloud.
This strategy can therefore offer the possibilities for collaborative and interactive data exploration of semantic 3D city
models by means of querying the thematic data of the selected city object. The corresponding system architecture is
illustrated in the following figure.

logical link
Visualization model — o — — — — — — — — -

on the web

Online
Spreadsheet in
the Cloud

export

Export
e.g. KMU/gITF

read

read

CityGML

Integration

3D City Database 3D Web Client

Fig. 5.7: Coupling an online spreadsheet with a 3D visualization model (i.e. a KML/gITF visualization model) in the
cloud [HeNK2012]

5.4. Handling KML/gITF models with online spreadsheet 325

https://github.com/AnalyticalGraphicsInc/3d-tiles
https://fusiontables.google.com/

3D City Database for CityGML, Release 4.1

% Berlin_Buildings_Attribute X

/

€ - C fi B8 hitps://www.google.com/fusiontables/data?docid=1tFuuEc3H)GewzyCT2hY1-8131nP1W_FXUnvpHwCl#rows:id=1

Berlin_Buildings_Attributes

Edited at 13:56

File Edit Tools Help = Rows1~ | HfCards 1 h

No filters applied

M 4 1-1000f954 (b b

GMLID Building_Height Building_Height_Unit Street_Name House Number Denkmal_Art
BLDG_00030009003f3fal 12,6454 umicgec:defuom:UCUM::m Bemauer Str. 86
BLDG_000300000020b7de 6.75036 um:oge:defuom:UCUM:m Lortzingstr. 32
BLDG_00030009006dad12 19.08051 um:oge:defuom:UCUM:-m Jasmunder Str, 1
BLDG_00030009003f3fTa 15.91154 um:oge:defuom:UCUM::m Brunnenstr. 142
BLDG_00030004007ef023 17.6925 um:oge:def:uom:UCUM:m Wolgaster Str. 1
BLDG_00030000001ec6da 15.21935 um:ogc:def:uom:UCUM::m Stralsunder Str. 34A
BLDG_0003000200255b32 22.43517 um:oge defuom:UCUM::m Brunnenstr. 122
BLDG_00030009007eef9e 16.05035 um:oge:def:uom:UCUM:m Swinemiinder Str. 27
BLDG_000200000020425d 24 84635 um:oge:defiuom:UCUM::m Stralsunder Str. €1
BLDG_0003000=00579887 22.86551 um:oge:defiuom:UCUM:m Usedomer Str 6
BLDG_0003000f004136e9 13.26942 um:oge:def;uom:UCUM:m Usedomer Str. 1
BLDG_0003000a00368137 2474132 um:oge:defuom:UCUM::m Strelitzer Str. 42 Gesamtanlage

Fig. 5.8: Example of an online spreadsheet (Google Fusion Table)

326 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

Similar to the structure of a database table, the first row of the online spreadsheet defines the attribute names, and the
further rows store the respective attribute values for each 3D object. The logical links between the 3D models and
the respective rows are established via a specific column within the spreadsheet, namely the GMLID column, which
contains the unique identifiers of the 3D objects. Each further column is used to represent one attribute of the 3D
object. By using the freely available Google Drive application, all users having access to the online spreadsheet are
able to edit it, for example to modify attribute values or insert new attribute fields, in order to keep the contents up-
to-date without affecting the original (possibly official) 3D city model. Besides, such a detachment of the thematic
data from the 3D visualization models also has the advantage that any update of thematic contents can exclusively
take place within the online spreadsheet and therefore does not require exporting and deploying the 3D visualization
models again.

In order to add a KML/gITF data layer along with its linked online spreadsheet to the 3D web client, the parameters
must be properly specified (some of which are optional) on the corresponding input panel [1] (cf. Fig. 5.9) which can
be expanded and collapsed by clicking on the Add / Configure Layer button.

Note: All default parameter values used in the 3D web client were chosen accordingly to the standard settings (e.g.,
the standard predefined tile size is 125m x 125m) specified in the preference settings of the KML/COLLADA/gITF
Exporter (cf. Section 3.6.3.1). The parameter name with the suffix “(*)” denotes that this parameter is mandatory;
otherwise it is optional.

Add | Configure Layer Remove selected layer

URL(™)

Name(")
thematicDatalr
cityobjects.sonlr
minLodPixels
maxLodPixels

MaxCountOfVisible Tiles(*)

(5]

0

[

=1 =)
2 &

MaxSizeOfCachedTiles(*)

Add layer Save layer setlings

Add WMS-Layer HRemove WMS layer

Add Temain-Layer Remove Temain layer
Choose highlighted Object

Choose hidden Object

Generale Scene Link Hide selected Oﬁecls
Clear Highlighting Show Hidden Ohecrs
Create Screenshot Print current view
Toggle Shadows Toggle Terrain Shadows
Show the selected object in Extemal Maps

Nummber of showed Number of cached

~ CESIUM ‘-;;390“5!08 b biNg & 2015 Char of Geoinformstics TU Minchen - Image courtesy of NASA - @ 2018 Intsmpvﬁnmunrfb__-!ib.s.' p_ B 2010 Mveet O TI!E‘:S U_ ST

Fig. 5.9: The input panel [1] for adding a new KML/gITF data layer and the extended Geocoder widget [2] allowing
to search a 3D object also by its gmlld

First of all, the web link of the master JSON file (cf. Section 3.5) holding the relevant meta-information of this data
layer has to be entered into the input field URL()*. In the input field Name()*, a proper layer name must be specified
which will be listed at the top of the input panel [1] once the KML/gITF data layer has been successfully loaded into

5.4. Handling KML/gITF models with online spreadsheet 327

3D City Database for CityGML, Release 4.1

the 3D web client. The parameter thematicDataUrl denotes the URL of an online spreadsheet (Google Fusion Table)
which stores the attribute data. This parameter is optional and is only required if the user wants to attach thematic data
to the KML/gITF visualization model.

The next optional parameter cityobjectsJsonUrl holds the URL of the JSON file which can be generated automatically
by using the KML/COLLADA/gITF Exporter (cf. Section 3.6.3.1). This JSON file contains a list of GMLIDs of all
3D objects which were exported and might be distributed over different tiles. For every 3D object, it is also stored
in which tile it is contained together with its envelope represented using a bounding box in WGS84 lat/lon. These
location information can be used to search for a certain 3D object with the help of the Geocoder widget [2], which has
been extended to support a specific geocoding process performed in the following manner: In the input field, either a
GMLID of a 3D object or an address can be entered. If an object with the given GMLID is found in the JSON file, the
camera perspective will be adjusted to look at the center point of the 3D object with a proper oblique view. If not, the
Bing Maps Locations API will be automatically called and the map view will be adjusted to the returned location and
bounding box.

The combination of the parameters minLodPixels and maxLodPixels defines the minimum and maximum limit of the
visibility range for each data layer to control the dynamic loading and unloading of the data tiles. The maximum
visibility range can start at 0 and end at an infinite value expressed as -1. Optionally, the user can directly specify
the two parameter values within the 3D web client. Otherwise, the parameter values will be achieved from the master
JSON file, which also contains the parameters minLodPixels and maxLodPixels and their values which have been
specified using the KML/COLLADA/gITF Exporter before performing the export process.

With these two parameters, the 3D web client implements the so-called Level of Details (LoD) concept which is a
common solution being used in 3D computer graphics and GIS (e.g. KML NetworkLinks) for efficient streaming and
rendering of tiled datasets. According to the LoD concept, the data tiles with higher resolution should be loaded and
visualized when the observer is viewing them from a short distance. When data tiles are far away from the observer,
the data tiles with higher resolution should be substituted by the data tiles with lower resolution. In order to realize
this LoD concept in the 3D web client, each data tile which is being intersected with the current view frustum will be
projected onto the screen while navigating the Earth map. Subsequently, the diagonal length of the projected area on
the screen will be calculated by the 3D web client to determine whether the respective data tile should be loaded or
unloaded. If the diagonal length is greater than minLodPixels and less than maxLodPixels, the respective data tile will
be loaded and displayed; otherwise it will be hidden from display and unloaded. Of course, all data tiles lying outside
of the view frustum are unloaded and invisible anyway.

Loading massive amounts of data tiles often result in poor performance of the 3D web client or even memory overload
of the web browser. This could happen when, for example, the visibility range (determined by the parameters minLod-
Pixels and maxLodPixels) starts at a very small value and ends at an infinite size. In this case, each data tile will always
be visualized even though it only takes up a very small screen space. This issue can be avoided by a proper setting
of the parameter maxCountOfVisibleTiles which specifies the maximum number of allowed visible data tiles. When
this limit is reached, any additional data tiles that are farthest away from the camera will not be shown, regardless the
size of screen space they occupy. Per default, this parameter receives a value of 200, which is appropriate in most
use cases. However, depending on data volume of each tile and the hardware you use, this parameter value has to be
adjusted by means of practical tests.

As mentioned before, the 3D web client implements a caching mechanism allowing for high-speed reloading of those
data tiles that have been loaded before and which are stored in the memory of the web browser. In order to prevent
memory overload, the parameter maxSizeOfCachedTiles can be applied for specifying the maximum allowable cache
size expressed as a number of data tiles. With this parameter, the 3D web client implements the so-called Least
Recently Used (LRU) algorithm which is a caching strategy being widely used in many computer systems. According
to this caching algorithm, newly loaded data tiles will be successively put into the cache. When the cache size limit
is reached, the 3D web client will remove the least recently visualized data tiles from the cache. By default, the value
of this parameter is set to 200 and can of course be increased to achieve a better viewing experience depending on the
hardware you use.

Usage example

In this example, a tiled KML dataset containing around 8000 LoD1 buildings in the Manhattan district of New York

328 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

A data tile is visible only when its
diagonal length lie within the
visibility range defined by the
minimum and maximum limit in
screen pixel

L 1om

Number of showed Number of cached
Tiles. 75 5

% Ties 35

\
A cESIUM £.3DCityDB > bing ¢ 2015 o & 2 x o ey B e S e A e e\

Fig. 5.10: Efficient determination of which data tiles should be loaded according to the user-defined visibility range in
screen pixel

5.4. Handling KML/gITF models with online spreadsheet 329

3D City Database for CityGML, Release 4.1

City (NYC) will be visualized on the 3D web client. This KML dataset is derived from the semantic 3D city model of
New York City (NYC) which has been created by the Chair of Geoinformatics at Technical University of Munich on
the basis of datasets provided by the NYC Open Data Portal. The following parameter values should be entered into
the corresponding input fields:

e url: https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NY C-Model-20170501/
Building_gltf/Building_gltf collada_MasterJSON.json

* name: NYC_Manhattan_Buildings

* thematicDataUrl: https://www.google.com/fusiontables/DataSource?docid=1iG6_
vYe7JGTNAUwFw7TpDSEMO-iQe6gSpa6 MJICF

e cityobjectsJsonUrl: https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/
NYC-Model-20170501/Building_gltf/Building_gltf.json

* minLodPixels: 100

* maxLodPixels: -1

» maxSizeOfCachedTiles: 200
* maxCountOfVisibleTiles: 200

After clicking on Add layer, a data layer will be loaded into the 3D web client and the corresponding layer name
NYC_Manhattan_Buildings will be listed above the input panel. The Earth map can be zoomed to the extent of the
loaded data layer by double-clicking on the layer name. The parameter values of the data layer (its radio button must
be activated) can be changed and applied at any time by clicking on the Save layer settings button.

ity
;

sedl

Fig. 5.11: Screenshot showing how to add a new KML/gITF data layer into the 3D web client

Users are also able to control the visibility of the selected data layers by deactivating its checkbox or clicking on the
Remove selected layer button to completely remove it from the 3D web client (cf. the following two screenshots)

330 Chapter 5. 3DCityDB-Web-Map-Client

https://www.gis.bgu.tum.de/en/projects/new-york-city-3d/
https://nycopendata.socrata.com/
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf_collada_MasterJSON.json
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf_collada_MasterJSON.json
https://www.google.com/fusiontables/DataSource?docid=1iG6_vYe7JGTNAUwFw7TpD8EMO-iQe6gSpa6MJlCF
https://www.google.com/fusiontables/DataSource?docid=1iG6_vYe7JGTNAUwFw7TpD8EMO-iQe6gSpa6MJlCF
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf.json
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf.json

3D City Database for CityGML, Release 4.1

Show [Hide Toolbox

© B YC_Manhattan_Buildings

Add / Configure Layer v Remove selected layer

URL(") hitps:/fwww.3dcitydb org/3dcitydbifile
Name(*)
tmatipataun
ciyobectssontn
o
maxdodPixels
MaxCountOMVisibleTies(*)
MaxSzB0ICacheTiex()

Add layer Save layer seftings
Add WMS-Layer Remove WMS layer
Add Terrain-Layer Remove Termain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objecis
Create Screenshot Print current view

Toggle Shadows Toggle Temrain Shadows

Show the selected object in Extemnal Maps

Fig. 5.12: Screenshot showing how to hide a KML/gITF data layer

5.4. Handling KML/gITF models with online spreadsheet 331

3D City Database for CityGML, Release 4.1

Show [Hide Toolbox

Add / Configure Layer v

URL(Y) https:/fwww. 3dcitydb. orgl3dcity db/file
Name(®)
thematicOataUr https:i/www.google com/fusiontables,
cityobjectsJsonUr https:{fwww. 3dcitydb org/3dcitydbifile
minLodPuas [
maxt odPels
MaxCountonVisibic Ties(")

MaxSizeOiCachedTies (")

Add layer Save layer settings

Add WMS-Layer Remove WMS layer
Add Terrain-Layer Remove Temain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects

Create Screenshot Print current view

Fig. 5.13: Screenshot showing how to remove a KML/gITF data layer from the 3D web client

5.5 Handling Web Map Service data

Cesium supports adding additional imagery layer to the Earth map by using the OGC compliant Web Map Service
(WMS). The 3D web client provides a simple widget panel which allows the user to easily add and remove arbitrary
number of WMS layers. The widget panel [1] (marked in the following figure) can be expanded and collapsed by
clicking on the Add WMS-Layer button on the widget panel.

A user-defined name for labelling the WMS layer has to be firstly specified via the name()* input field. In addition,
the iconUrl parameter points to the URL address of an icon image, which will be listed together with the user-defined
layer name in the BaseLayerPicker panel [2]. When the mouse pointer is over the icon image, a tooltip will appear
which can be specified in the tooltip()* input field. The url parameter value corresponds to the URL address of the
WMS server that provides the imagery contents of a WMS layer. According to the WMS specification, a WMS layer
is allowed to contain one or more sublayers (listed in the WMS Capabilities file) whose names must be separated by
comma and entered into the input field layers()*. Besides the standard WMS HTTP request parameters, additional
parameters might be required by some WMS servers. In this case, such additional parameters must be formatted as
key=value pairs separated by the “&” character and entered into the additionalParameters input field. The proxyUrl
parameter helps the 3D web client to get around the cross-domain issue when performing WMS requests. Since
most of the WMS server do not support CORS, a proxy running behind the 3D web client is required. If you use
the JavaScript-based HTTP server shipped with the 3D web client, you don’t need to change the default value, since
there already exists a built-in proxy running with the relative path “/proxy/”. Otherwise, this parameter value must be
adjusted according to the path of the proxy in use.

Usage example:

In this example, a WMS imagery layer provided by the Vorarlberg State Government will be added to and displayed
in the 3D web client. The following parameter values should be entered into the corresponding input fields:

* name: Vorarlberg_Aerial_Photography

332 Chapter 5. 3DCityDB-Web-Map-Client

http://www.vorarlberg.at/

3D City Database for CityGML, Release 4.1

Show | Hide Toolbox

Add | Configure Layer Remove selected layer

Add WMS-Layer Remove WMS layer

name(*)
iconUn(®)
ooltip(*)
urd(*)

layers(")

proxyUn proxy/

Add WMS layer

Add Terran-Layer v Remove Terran layer Ceogliapte
Choose highlighted Object 5
‘o

Ghoose hidden Object el

Generate Scena Link Hide selected Objects r’rh":‘:rﬂ

Clear Highhghting Show Hidden Objects Terrain
Create Screenshot Prant cument view
Toggle Shadows Toggle Temrain Shadows

Show the selected object in External Maps

A ceEsiuM g.}DCityDB b bing o2 » Number of showed L | Number of cached

of Geoinformatics TU Minchen « image courtesy of NASA + © 2010 Intermap Ex g -0y " Hes O

ERE

Fig. 5.14: The input panel [1] for adding a new WMS layer and the BaseLayerPicker widget [2] where the added
WMS layers will be listed together with the per default available imagery layers

5.5. Handling Web Map Service data 333

3D City Database for CityGML, Release 4.1

¢ iconUrl: http://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif
* tootip: Vorarlberg Aerial Photography taken during the winter 2015

* url: http://vogis.cnv.at/mapserver/mapserv

¢ layers: wi2015_20cm

* additionalParameters: map=i_luftbilder_r_wms.map

* proxyUrl: /proxy/

Show / Hide Toolbox

Add ! Configure Layer ¥ Remove selected layer

Add WMS-Layer v Remove WMS layer

rame(’) \ 6
iconu)
oo
) s
fayersc) .
adatonaiParameters :
proxyUrt
Add WMS layer
Add Terrain-Layer v Remaove Temrain layer
Choaose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot Print cument view
Toggle Shadows Toggle Terrain Shadows

Show the selected object in External Maps

. ~
g Eed Number of showed Number of cached
N EESIIAL | : : " ol jrest) nesct

Fig. 5.15: Example showing how to add a new WMS layer to the 3D web client

As shown in the figure above, once the parameter settings have been completed, the WMS layer can be loaded by
clicking on the Add WMS layer button [3] and its icon image together with its label name [4] will be listed on the
BaseLayerPicker widget. You can use the Geocoder widget [5] to zoom the Earth map to the region of Vorarlberg
state and check the added WMS layer. Clicking on the Remove WMS layer button [6], the WMS layer will be removed
and substituted with the Bing Maps Aerial that is the first item listed on the BaseLayerPicker widget.

5.6 Handling Digital Terrain Models

Cesium offers the possibility of high-performance streaming and rendering of Digital Terrain Models (DTM) for the
realistic representation of the Earth’s surface. Cesium provides per default two available terrain layers, which can
be selected in the BaseLayerPicker [2] widget. The first one is the so-called WGS84 Ellipsoid (default terrain layer)
which approximates the Earth’s surface using a smooth ellipsoid surface with a constant height value of 0. The other
one is the so-called STK World Terrain (Replaced by Cesium World Terrain starting from September 1st 2018) using
a worldwide 3D elevation data with an average grid resolution of 30 meters, which is sufficient in many use cases.

334 Chapter 5. 3DCityDB-Web-Map-Client

http://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif
http://vogis.cnv.at/mapserver/mapserv

3D City Database for CityGML, Release 4.1

For specific application cases, high-resolution Digital Terrain Models might be required. For this case, the 3D web
client provides a simple widget to facilitate handling the terrain data that must be created in a specific terrain format
(heightmap or quantized-mesh) defined by Cesium. There exists an open source software tool Cesium Terrain Builder
for creating terrain data in heightmap format. The created terrain data is generated in a hierarchical folder structure
according to the TMS tiling schema and can be easily published on the web by uploading the terrain data files to a
CORS-enabled web server.

The input panel [1] on the 3D web client for adding and removing terrain layers can be expanded and collapsed by
clicking on the Add Terrain-Layer button.

S i e — a[#]>](]@

Add Configure Layer Remove selected layer

Add WMS-Layer Remove WMS layer

Add Terrain-Layer Remove Termain layer
name(*)

iconUri{*)

Tooltip{*)

wrl(*)

Add Tewain layer

Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Obiects
Create Scresnshot Print current view
Toggle Shadows Toggle Temain Shadows

Show the selected object in Extemal Maps

=

vlﬂ:—?:ﬂhh‘i u

Fig. 5.16: The input panel [1] for adding a new terrain layer and the BaseLayerPicker widget [2] where the added
terrain layers will be listed together with the per default available base layers

For adding a new terrain layer, the input fields name()*, iconUrl()*, and tooltip()* in the input panel [1] have to be
filled with a proper label name, an URL of an icon image, and a short tooltip respectively. When a terrain layer has
been loaded, its icon image together with its label name will be listed in the BaseLayerPicker panel [2]. The tooltip
will automatically appear when the mouse is moved over the respective icon image. The url parameter points to the
URL of the web server folder where the terrain data are stored.

Usage example

In this example, a high-resolution (0.5m) Digital Terrain Model provided by the Vorarlberg State Government will be
added to the 3D web client. This terrain data was created in heightmap format using the open source tool Cesium
Terrain Builder. Here, the following parameter values should be entered into the corresponding input fields:

e name: Vorarlberg DTM
¢ iconUrl: https://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif
* tootip: Digital Terrain Model of Vorarlberg

5.6. Handling Digital Terrain Models 335

https://github.com/geo-data/cesium-terrain-builder
https://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif

3D City Database for CityGML, Release 4.1

e url: https://www.3dcitydb.org/3dcitydb/fileadmin/mydata/Vorarlberg_Demo/Vorarlberg_ DTM

Show [Hide Toolbox v &

Add | Configure Layer Remaove selected layer
Add WMS-Layer ’ Remove WMS layer Prase. BEE : Noimy—

Add Termain-Layer x Remove Temain layer : 2 e h : .] Malvern Malhvem JI8

BngMaps BingMeps Bing Maps
name(*) \orarlberg DTM

Y Aetinl Al with Rouscls.
f': = Labels
icanUri{*) http://cdn flaggenplatz de/media/c atalog/produs il

toolfip(*) Digital Terrain Mode! of Vorarberg t

urh(*) httpc/fwww. 3dcitydb de/3dc ity db/fileadmin/z
Add Temain layer
Choose highlighted Cbject
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects

Create Screenshot Print curment view =
e

. MapQuest Y g g A
= ; - - nStreet- e oltoge
Toggle Shadows Toggle Temain Shadows & \ 5 i

Show the selected object in Extemnal Maps

| 200m

Number of showed Number of cached
Tiles: 0 Tiles: 0

Fig. 5.17: Example showing how to add a new terrain layer to the 3D web client

As shown in the figure above, once the parameter settings have been completed, the terrain layer can be loaded by
clicking on the Add Terrain layer button [3] and its icon image together with its label name [4] will be listed on the
BaseLayerPicker widget. You can use the Geocoder widget [S] to zoom the Earth map to the region of Vorarlberg state
and check the loaded terrain data. Clicking on the Remove Terrain layer button [6], the terrain layer will be removed
and substituted with the WGS84 Ellipsoid terrain layer.

5.7 Interaction with 3D objects

The 3D web client supports rich model interaction such as highlighting of 3D objects on mouse over and mouse click.
More than one 3D object can be selected by Ctrl-clicking on them and can also be hidden and redisplayed in the 3D
web client interactively. Besides, the user is able to create a screenshot image of the current map view (including the
highlighted and hidden 3D objects) or print it directly via the web browser. Moreover, when a 3D object is selected,
it can be visually inspected in other third-party mapping applications (Bing Maps, Google Streetview, OpenStreetMap
and DualMaps) from multiple view perspectives such as oblique view, street view, or a combined version.

For the sake of clarity, the above mentioned functionalities will be illustrated with the help of a number of screen-
shots generated based on the online demo Semantic 3D City Model of Berlin which shows all Berlin’s buildings (>
550,000) with textured 3D geometries and many thematic attributes in the 3D web client. You can find the link of this
demo via the following web page:

https://github.com/3dcitydb/3dcitydb-web-map

336 Chapter 5. 3DCityDB-Web-Map-Client

https://www.3dcitydb.org/3dcitydb/fileadmin/mydata/Vorarlberg_Demo/Vorarlberg_DTM

3D City Database for CityGML, Release 4.1

Once the demo was opened in your web browser, you may need to use the Geocoder widget to zoom the Earth map to
the building object with the GMLID “BLDG_0003000b00092940".

BLDG_0003000b0009a
- oy

- BLDG_0003000b0009a940
GMLID BLDG_0003000b0009a944
BUILDING_MEASURED_HEIGHT 82
BUILDING_FUNCTION 1141
DENKMALART Baudenkmal
EIG_KL_ST 1

DENK_ID 9030374
EIG_KL_PV

H_First_Min 407
H_First_Max 118.75
H_Trauf_Min 40.7
H_Trauf_Max 80
Tex\Version 1

Kachel 2300024000
LAND

RBEZ

KREIS

GMDE

STR

HNR

ADZ

LFD

OAR

FOLIE

ANZ_LOC

A cesiuM T, 3DCityDB b bing o 2015 et o oot oo 5 A .. Number of cached

() Intergraph

Fig. 5.18: By clicking on a building object it will automatically be highlighted and its attribute information will be
queried from a Google Fusion Table and displayed in tabular form on the right side of the 3D web client

5.8 Mobile Support Extension

Starting from version 1.6.0, the 3DCityDB-Web-Map-Client is equipped with an extension that provides better support
for mobile devices. The extension comes with a built-in mobile detector, which can automatically detect and adjust
the client’s behaviors accordingly to whether the 3D web client is operating on a mobile device. The extension has
been tested on several smartphones and tablets running Android and iOS.

Some of the most important mobile features enabled by this extension are listed as follows:

5.8.1 A more lightweight graphical user interface

In order to make the best use of the limited screen real-estate available on mobile devices, some elements are removed
or hidden from the web client, such as credit texts and logos, as well as some of Cesium’s built-in navigation controls
that can easily be manipulated using touch gestures (see Fig. 5.29).

The main toolbox now scales to fit to the screen size. In case of excess lines/length, the toolbox becomes scrollable
(see Fig. 5.30).

5.8. Mobile Support Extension 337

3D City Database for CityGML, Release 4.1

Show / Hide Toolbox g L . E BLDG_0003000600092940
— = = ’ v -

© [Briin_Buildings_rgbTexture - BLDG 0003000b0002a%940
Add / Configure Layer v Remove selected layer GMLID BLDG 0003000b00092940
Add WMS-Layer T Remove WMS layer . b ! BUILDING_MEASURED_HEIGHT 82

BUILDING_FUNCTION 1141

. (DENKMALART Baudenkmal
Choose highlighted Object g % EIG KL ST 1

Add Temrain-Layer v Remove Temain layer

Choose hidden Object : DENK_ID 9030374
: - [. EIG_KL PV
Generate Scene Link Hide salected Objects
11_Tirst_Min

Clear Highlighting Show Hidden Objects 1 i H First Max
Create Screenshot Print curent view : H_Traul_Min

Tooe s Tockide Tenait Shakiva H_Trauf_Max

Show the selected object in Extemal Maps

KREIS
GMDE
STR
HNR

10m

T —
Nurnber of showed Number of cached

DING ©2015 Chair of Goginformat

Fig. 5.19: By clicking on the dropdown list Show the selected object in External Maps, the user can select one of the
given options to explore the selected building object in the chosen mapping application which will be opened in a new
browser window or tab

338 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

=

¥/ Map ¥ Street View ¥ Birds Eye || Info

Full Page Reset |F\r‘|d Address |

Road Aerial Bird'seye

N

Gartenpl.

Gartenpl.

Ganen}'._-_

GOOg‘e - © 2016 Google | Terms of Use | Raport a problem

Predictive Analytics [X
Map Satellite Mehrwerte und Einsatzbeispiele - -,
Kostenfreies PAC Whitepaper!
Dorotheenstadt
Friedhof || 2
3
o %
s o, Gz =
& s, £
) e ®
@ %,
» o)
@, @
% F
LS & Lo
0 3 8 RS “S}fs
) p & s,
% - LS
o o T
Gartenplatz 6‘791'_
e
%, e
=
%
%
2,
©
B
o &
e 2 &
Wo! Z. 5
% 4 &
Bocg 5 s f Bing |
O0QI€ yap dana 2016 GeoBasis-DE/BKG (€2009), Googld | 100 L—_ 1 .Ferms of Use Report = map emor Ry 5] X DR A

Fig. 5.20: If the option DualMaps has been chosen, the selected building will be shown in a so-called mash-up web
application linking different view perspectives, e.g. Google 2D map view, Google Streetview, and Bing Maps oblique
view

5.8. Mobile Support Extension 339

3D City Database for CityGML, Release 4.1

Show / Hide Toolbox * W -~ . . N BLDG_0003000b00092940

‘ Sy 10 m
S ! e

Number of showed Number of cached

N CESIUM 1::30!’..:“!.!'03 > bing e 2015 chias s GesinfomstisTU Minchen - © 2018 Mozl Eorms r.m--a-zma HERE - @ AND - © 2018 &.:r.ll_es_: m o Ay 1”_3.5:.1.2...._.. = a

Fig. 5.21: A group of building objects can be interactively selected by Ctrl-clicking. Deactivating the selection of a
certain building object can be done by Ctrl-clicking on it again

340 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

Show / Hide Toobox ¥

(] Briin_Buildings_rgbTexture
Add /| Configure Layer v Remove selected layer
Add WMS-Layer x Remove WMS layer
Add Terrain-Layer v Remaove Temain layer
Choose highlighted Object

Choose hidden Object

Generate Scene Link Hida salected Objects

Clear Highlighting Show Hidden Objects
Create Screenshol Print current view
Toggle Shadows Toggle Terrain Shadows

Show the selected object in External Maps

10m
" e W 3
Number of showed Number of cached

iM’CE5|L’N‘“ tﬁaDCityDB b bing & 2015 Charr of Geoinformates TU Minzhen - © 2016 Mensaft Corpamtion - © 2018 HERE - € AND - @ 2018 Gu I‘Ik:;: i b= AR T IIICS_Z U

b

Fig. 5.22: The selected building objects can be hidden by clicking on the button Hide selected Objects. The GMLIDs
of the selected (highlighted) and hidden building objects can be explored by clicking the drop-down buttons Choose
highlighted Object and Choose hidden Object respectively

5.8. Mobile Support Extension 341

3D City Database for CityGML, Release 4.1

Show / Hide Toobox - 3 e o BLDG_0003000600092940
[+] Briin_Buildings_rgbTexure :
Add | Configure Layer v Remove selected layer
Add WMS-Layer v Remove WMS layer
Add Tesrain-Layer v Remove Temain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshol Print current view
Toggle Shadows Toggle Temain Shadows

Show the selected object in Extemal Maps

o
=%
Z
%
®

L 10m,
. 'l o W -

Number of showed MNumber of cached

Tiles: 10 Tiles: 12

' CESIUM ?ﬁDCilYDB > bing vaix of Geomtormstes TU Minch 2018 Micsoft Copombion = © 2018 HEFE - 8 AND - © 2018 ™ i e -

Fig. 5.23: The hidden objects can be shown on the 3D web client again by clicking on the button Show Hidden Objects

342 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

Show / Hide Toolbox
o Briin_Buildings_rgbTexture
Add | Configure Layer ¥ Remove selected layer
t Add WMS-Layer Y Remove WMS layer
Add Terrain-layer v Remove Temrain layer
Choose highlighted Object
Choose hidden Object

Generate Scene Link Hide selected Objects

Claar Highlighting Show Hidden Objects

Create Screenshot Print current view
Toggle Shadows Toggle Terrain Shadows

Show the selected object in Extemnal Maps

| 10m

| e = r
g MNumber of showed Number of cached
NCES'UM 1:.3DC“)|'DB b bing © 2015 Char of Geonformates TU Minchen - & 2018 Miccsoft Corpombion - € 2016 HERE - 8 AND - © 2016 G T’lk'_‘s 1'.:' st WERELE Ilk':s_: L

Fig. 5.24: The objects selection and along with the highlighting effect can be deactivated by clicking on the button
Clear Highlighting

5.8. Mobile Support Extension 343

3D City Database for CityGML, Release 4.1

Show / Hide Toobox v

(o] Briin_Buildings_rghTexture
Add / Configure Layer v Remove selected layer
Add WMSH ayer v Remove WMS layer
Add Temain-Layer v Remove Terrain layer
Choose highlighled Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot Print cument view
Toggle Shadows Toggle Terrain Shadows

Show the selectad object in External Maps

%
2
A
%
©

z g 10m

3 Number of show Number of cached
2 CESIUM T,3DCityDB L bing o 2015 cnse st Gecintoapmia aomenen - © 2015 scronsh o s A T T A

Fig. 5.25: A screenshot of the current view can be created directly within the 3D web client by clicking on the button
Create Screenshot or Print current view

344 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

|

Print

Total: 1 sheet of paper

| Cancel |

Destination 1l GISLASERS

Change... |
Pages s Al
Copies 1 T
Layout Portrait -
Color Color -
Options | Two-sided

< More settings

Print using system dialog... (Ctrl+5hift+P)

Fig. 5.26: Once the button Print current view has been clicked on, a printer settings dialog (differs for different web
browsers) will appear giving a preview of the screenshot file to be printed

5.8. Mobile Support Extension 345

3D City Database for CityGML, Release 4.1

Show / Hide Toolbox ¥
(] Briin_Buildings_rgbTexiure
Add | Configure Layer ¥ Remove selected layer
Add WMS-Layer - Remove WMS layer
Add Terrain-Layer ¥ Remave Terrain layer
Choose highlighted Object
Choose hidden Object
Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects
Create Screenshot Print current view
Toggle Shadows | Toggle Terrain Shadows

Show the selected object in External Maps

=)
5
2
=
2
™

Number of showed Number of cached
les: 10 [

B
I

2 CESIUM 1:.. 3DCityDB l’ BING 2015 Crak of Geaintomatics T Minchen - © 2016 Mersalt menmr_r-';: 2018 HERE a BND - €

Fig. 5.27: Shadow visualization of the 3D city models can also be activated and deactivated by clicking the Toggle
Shadows button

346 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

Show | Hide Toolbox *
(=] Briin_Buildings_rgb Texture

Add | Configure Layer v Remove salected layer

Add WMS-Layer v Remove WMS layer

Add Tesrain-Layer v Remove Terrain kayer
Choose highiighted Ofyect
Choose hidden Ohiact
Generate Scens Link Hide selected Objects
Clear Highighing Show Hidden Objects
Create Screenshot Print curent view Scene Link
Toggle Shadows Toggle Temain Shadows

Show the selected object in External Maps

Fig. 5.28: It is possible to create a scene link saving the current status of the 3D web client by clicking on the Generate
Scene Link button. This scene link encodes the information about the title of the web site, activation status of the
shadow visualization, parameters of the current loaded layers, the camera perspective etc. The created scene link can
be stored as a browser bookmark or favorite and can also be sent e.g. by email to friends, colleagues, project partners
etc. When they open the link, the same scene will open in their browsers.

5.8. Mobile Support Extension 347

3D City Database for CityGML, Release 4.1

The infobox displayed when a city object (e.g. building) is clicked is now displayed in fullscreen with scrollable
contents, as illustrated in Fig. 5.31 below.

5.8.2 Geolocation-based features
The web client contains a new GPS button (located on the top right corner in the view toolbar) providing new func-
tionalities involving user’s current location and orientation (see Fig. 5.32 and Fig. 5.33). Namely:

 Location “snapshot” (single-click): shows the user’s current position and orientation.

* Real-time Orientation Tracking (double-click): periodically shows the user’s current orientation with fixed lo-
cation.

* Real-time Compass Tracking + Position (triple-click) or the “First-person View” mode: periodically shows the
user’s current orientation and position.

To disable real-time tracking, simply either click on the button again to return to “snapshot” mode or hold the button
for 1 second, the camera will then ascend to a higher altitude of the current location.

Note: The mobile extension makes use of the Geolocation API and the DeviceOrientation APl in HTMLS5. The
Geolocation API only works via HTTPS since Google Chrome 50. Therefore, make sure the client is called from a
secured page (via SSL/HTTPS). Additionally, permission to retrieve current orientation and location must be granted
by the user.

348 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

SIM fehlt = 16:14 -
& 3dcitydb.org C

Sep 4 2017

14:14:35 L Sep 5 2017 00:00:00 UTC
<« 11> |

5.8. Mobile Support Extension 349
Fig. 5.29: The 3DCityDB Web Map Client on mobile devices

3D City Database for CityGML, Release 4.1

SIM fehlt = 18:07 -
& 3dcitydb.org C

Remove selected layer
Remove WMS layer

Remove Terrain layer

Generate Scene Link Hide selected Objects
Clear Highlighting Show Hidden Objects

Create Screenshot Print current view

Toggle Shadows Toggle Terrain Shadows

Sep 4 2017

14:25:30 LY , Sep 5 2017 00:00:00 UTC
<« 1> |

350 Chapter 5. 3DCityDB-Web-Map-Client

Fig. 5.30: The main toolbox on mobile devices

3D City Database for CityGML, Release 4.1

SIM fehlt =

11:19

& 3dcitydb.org

GMLID
DatenquelleBodenhoehe
DatenquelleDachhoehe
DatenquelleLage
Gemeindeschluessel
HoeheDach

Methode

Niedrigste TraufeDesGebaeudes
StandLK

Stadt

StraBe

measuredHeight
roof_type
storeys_above_ground
function

ExternalObjectName
InformationSystem

directRad_year

directRad_month_01

<]

DEBY_LOD2_4959457

DEBY_LOD2_4959457
1100

1000

1000

9162000
547.33

2000

527.279
12/5/2014
Munchen
ArcisstraBe 21
37.54

3200

6

99999_1001
4959457

http://repository.gdi-
de.org/schemas/adv/city

[

5.8. Mobile Support Extension

351

Fig. 5.31: The infobox on mobile devices

3D City Database for CityGML, Release 4.1

Fig. 5.32: From left to right, the 3 modes of geolocation-based features: Location snapshot, Real-time orientation
tracking and First-person view

352 Chapter 5. 3DCityDB-Web-Map-Client

3D City Database for CityGML, Release 4.1

SIM fehlt = 10:35 -
& 3dcitydb.org C

1x

Sep 28 2017
08:35:500 Sep 29 2017 00:00:00 UTC
< Il > |
5.8. Mobile Support Extension 353

Fig. 5.33: Real-time orientation tracking and First-person View on mobile devices

3D City Database for CityGML, Release 4.1

Show | Hide Toolbox v

rof showed _ MNumber of cached
* Tiles: 1

Fig. 5.34: Screenshot showing the example of displaying different CityGML top-level features (building, bridge,
tunnel, water, vegetation, transportation etc.) in gITF format in the 3D web client

354 Chapter 5. 3DCityDB-Web-Map-Client

CHAPTER O

Appendix

This section contains some background information about the 3DCityDB contributors and how they use the software
in research and daily business. Visit the official 3DCityDB homepage for news updates or follow us on our Twitter
channel.

355

https://www.3dcitydb.org/3dcitydb/
https://twitter.com/3dcitydb

3D City Database for CityGML, Release 4.1

6.1 Contributors

6.1.1 Active participants in development

Name

Institution

Email

Thomas H. Kolbe
Son H. Nguyen
Kanishk Chaturvedi
Bruno Willenborg
Andreas Donaubauer

Chair of Geoinformatics,
Technische Universitiat Miinchen

thomas.kolbe @tum.de
son.nguyen@tum.de
kanishk.chaturvedi @tum.de
b.willenborg@tum.de
andreas.donaubauer @tum.de

Claus Nagel virtualcitySYSTEMS GmbH, cnagel @virtualcitysystems.de
Zhihang Yao Berlin zyao@virtualcitysystems.de
Harald Schulz M.O.S.S. Computer Grafik Systeme | hschulz@moss.de

Philipp Willkomm GmbH, pwillkomm@moss.de
Gyorgy Hudra Taufkirchen, Germany ghudra@moss.de

Felix Kunde

Beuth University of Applied
Sciences

felix-kunde @ gmx.de

6.1.2 Participants in earlier developments

The 3D City Database Version 4.0 and its tools are based on earlier versions. During the development phase 2006-
2012 at the Institute for Geodesy and Geoinformation Science, TU Berlin, the following individuals contributed to the

development:

356

Chapter 6. Appendix

mailto:thomas.kolbe@tum.de
mailto:son.nguyen@tum.de
mailto:kanishk.chaturvedi@tum.de
mailto:b.willenborg@tum.de
mailto:andreas.donaubauer@tum.de
mailto:cnagel@virtualcitysystems.de
mailto:zyao@virtualcitysystems.de
mailto:hschulz@moss.de
mailto:pwillkomm@moss.de
mailto:ghudra@moss.de
mailto:felix-kunde@gmx.de

3D City Database for CityGML, Release 4.1

Name Institution Email
Thomas H. Kolbe Institute for Geodesy and

Claus Nagel Geoinformation

Javier Herreruela Science, Technische Universitit

Gerhard Konig Berlin

Alexandra Lorenz
(geb. Stadler)
Babak Naderi

Felix Kunde University of Potsdam

During the development phase 2004-2006 at the Institute for Cartography and Geoinformation, University of Bonn,
the following individuals contributed to the development:

Name Institution Email
Thomas H. Kolbe Institute for Cartography and

Lutz Pliimer Geoinformation,

Gerhard Groger University of Bonn

Viktor Stroh

Jorg Schmittwilken

Andreas Poth lat/lon GmbH, Bonn
Ugo Taddei

6.2 3DCityDB @ TU Miinchen

The Chair of Geoinformatics at Technische Universitdt Miinchen (TUM) took over the further development of the 3D
City Database from TU Berlin (TUB) when Prof. Kolbe moved from TUB to TUM in 2012. 3DCityDB is being used
at TUM in teaching courses on spatial databases and 3D city modeling, in student projects and master theses, and in
many past and ongoing research projects.

6.2.1 Interactive Cloud-based 3D Webclient

Besides the Open Source 3DCityDB-Web-Map-Client as described in chapter 8 the Chair of Geoinformatics has also
developed a “Professional Version” of the interactive 3D web client. This version links 3D visualization models ex-

6.2. 3DCityDB @ TU Miinchen 357

https://www.gis.bgu.tum.de

3D City Database for CityGML, Release 4.1

ported in KML/gITF from 3DCityDB with table data exported using the 3DCityDB Spreadsheet Generator and allows
viewing, editing, and querying objects and their thematic data (cf. [HeNK2012]; [YSKK2012]; [ChYK2015]). The
configuration of a 3D webclient project (information about each layer, thematic data, preferences, spatial bookmarks)
is also stored in the Cloud as a Google Spreadsheet. The following image shows a screenshot of a tool created by
TUM for the Energy Atlas Berlin that is based on the “3D Webclient Professional”. It estimates building energy de-
mands based on the German standard DIN 18599 and the 3D building models in CityGML and allows to interactively
explore retrofitting potentials for single or sets of buildings (cf. [KaKo2014]). Thematic data are stored in Google
Spreadsheets, where spreadsheet formulas are employed to implement ad-hoc computation of energy values and their
changes according to retrofit measures. Also the costs of the retrofitting measures are estimated for each building
individually.

3DCityDB Webclient Professional V2.3 ©2012-2017 Chair of Geoinformatics TU Miinchen

Control Panel Cesium Viewer Layer Settings GSpreadsheet GFusionTable Mashu|

Layer List ~! Project~ | Tools+ | : :Bounding Box Sign Out | Thomas H. Kolbe | Showin~ Generate Report

NOUIOTUCIIY TS UT

E Berlin Moabit ESTIMATED_ _HEAT_DEMAND

1E
] Jan_kwh 11944
7] Feb_kwh 10055
7] Mar_kwh 7972
7] Apr_kwh 3820
[] May_kwh 1220
] Jun_kwh 278
7] Jul_kwh 0
[] Aug_kwh 4
T[] sep_kwh 1280
" |[] oct_kwh 4535
Map Control] Nov_kwh 9234
Stored Viewpoints - [[] Dec_kwh 12473
Create new Viewpoint Upload to Cloud Remove All | [T] Year_kwh 62821
Name Last Modification D... ~ Last Modifier [[1 Year m2_kwh 48
hello 20.03.2017 12:37:09 Thomas H. Kolb [[] ___REFURBISHMENT_ _COSTS____
hello2 19.10.2017 17:06:09 Thomas H. Kolb 7] WallRetrofit 70566

Commit Changes = Rollback Changes = Query~ = Open Sprea

Object Selection | Hidden Objects

@cEsIUM T30CityDB(> binl SAEER L o

Add KML/KMZ/gITF Layer Configuation h i Méinghen - © 2018 Microsoft Cofporation - @.2018 Hsagi- 20181Dig] ?bbe- GCNES'(2018) CEEr SR QRS | AepeREitne | AapeEensa |y
— : Sep 102018 s : ‘ Vi i
Add 3D-Tiles Layer Configuation + 08:13:06 UTC [;5""‘“"0" Airbus DS < » 3 b Object ID
N e 102018 12:00:00 UTH 11 2018 00:C m
Add WMS Layer Configuation + 4 1l ‘ » ‘ m>cP | P | 7 BLDG_0003000b00446edc

Add Terrain Layer Configuation +| | Tiling Manager is idle Number of showed tiles: 12 | Number of cached tiles: 27 Count of the selected Objects: 1

6.2.2 Research Projects in which 3DCityDB is being used

Semantic 3D city modeling, city system modeling, and indoor navigation are major research fields of the Chair of
Geoinformatics at TUM. We have been driving the international development of CityGML and IndoorGML within
the OGC. We are partners in and/or coordinators of projects on Smart Cities, Sustainable Urban Development, and
Strategic Energy Planning funded by the Climate-KIC of the European Institute of Innovation & Technology (EIT).
Projects using 3DCityDB are: Energy Atlas Berlin, Neighborhood Demonstrators, Smart Sustainable Districts, Model-
ing City Systems, and Smart District Data Infrastructure. 3DCityDB has also been used in the OGC Future Cities Pilot,
and * 3D Tracks- Collaborative Subway Track Planning in Multi-Scale 3D City and Building Models’ [BKDS2015]
funded by the German Science Foundation (DFG) and was used in projects on deriving 3D DLM from 2D DLM and
DTM/DSM [FMWD2018].

6.2.3 Current and future work on 3DCityDB

The team at the Chair of Geoinformatics is currently working on the following tools and extensions to 3DCityDB.
Most of them will be made available as Open Source software within the 3DCityDB repository as soon as they are
finished and tested:

Support of the Dynamizer ADE: Dynamizers extend CityGML to support the representation and exchange of time-
varying attribute values for all CityGML feature properties using timeseries. Support in 3DCityDB is facilitated by
1) provision of the Java library for importing and exporting CityGML Dynamizer ADE contents, and 2) provision

358 Chapter 6. Appendix

http://www.climate-kic.org/
http://www.gis.bgu.tum.de/en/projects/energieatlas-berlin/
https://www.gis.bgu.tum.de/en/projects/smart-sustainable-districts-ssd/
https://www.gis.bgu.tum.de/en/projects/modeling-city-systems-mcs/
https://www.gis.bgu.tum.de/en/projects/modeling-city-systems-mcs/
https://www.gis.bgu.tum.de/en/projects/smart-district-data-infrastructure/
https://www.gis.bgu.tum.de/en/projects/future-cities-pilot-phase-1/
https://www.gis.bgu.tum.de/en/projects/3dtracks/

3D City Database for CityGML, Release 4.1

of a new web service, the so-called InterSensor Service, which will give access to the timeseries data stored in the
3DCityDB according to the OGC Sensor Web Enablement standards.

Update Manager: This tool will provide a check-out / check-in functionality for parts of stored 3D city models for
the purpose of editing and updating. It will automatically detect changes made on the previously exported (checked-
out) CityGML dataset and create WFS as well as direct database transactions that will update the 3DCityDB contents
according to the identified changes (check-in).

Solar potential analysis: This tool computes the solar energy of direct and diffuse irradiation on building walls and
roofs. The computation considers shadow casting by buildings, vegetation, a Digital Surface Model and the Digital
Terrain Model. The monthly energy and irradiation values as well as the sky view factors are attached as generic
attributes to wall and roof surface objects and in aggregated form to buildings. The software is implemented in Java
and directly connects to the 3DCityDB. It has been employed to estimate the solar potentials in the official Energy
Atlas of the city of Helsinki, Finland.

6.3 3DCityDB @ virtualcitySYSTEMS

virtualcitySYSTEMS has successfully applied the 3D City Database in customer projects worldwide and also funded
its development. With the Open Source database at the core, virtualcitySYSTEMS also offers a 3D Spatial Data
Infrastructure solution for the management, distribution, maintenance and visualization of massive 3D geo data (see
next page). As leading developers of the 3D City Database joined the company, virtualcitySYSTEMS now takes an
active role in its development. Moreover, virtualcitySYSTEMS offers a branded version of the 3D City database called
the virtualcityDATABASE to answer customer demands and to provide support and maintenance.

6.3.1 virtualcityDATABASE

The virtualcityDATABASE provides enhanced database functionality as well as plugins for the Importer/Exporter tool
that support workflows for maintaining and updating the 3D city model content. Main features are:

* Integration of additional LoDs against existing city objects in the database
This plugin allows for integrating city objects from an external data source with existing city objects stored in
the database. The candidate objects are identified with the database objects based on thematic and spatial
checks. Therefore, data inconsistency can easily be spotted and analyzed before an import. If an integration is
performed, exiting LoDs are replaced and newly introduced LoDs are attached to the existing objects.
Moreover, appearance information can be integrated without replacing the geometry.

¢ Deletion of entire city objects or single LoDs representations
The 3D City Database provides a low-level API for deleting city objects. This API has been extended in the
virtualcity DATABASE to also delete single LoDs of city objects. A graphical user dialog realized as a plugin
for the Importer/Exporter allows users to easily delete city objects based on comprehensive thematic filter
criteria.

¢ Adding material appearances for buildings

This plugin helps to define constant material information for building surfaces based on thematic properties
(e.g., to colorize roofs according to their solar potential).

* Transactional Web Feature Service
Customers of the virtualcity DATABASE already benefit from an OGC-compliant WES 2.0 implementation that
supports transactions as well as comprehensive spatial and thematic queries using the OGC Filter Encoding
standard.

The virtualcityDATABASE is fully compliant with the 3D City Database. If features developed for the virtualcity-
DATABASE have gained enough maturity, virtualcitySYSTEMS will introduce them to the Open Source 3D City
Database project (e.g. the WES interface).

6.3. 3DCityDB @ virtualcitySYSTEMS 359

http://www.virtualcitysystems.de/

3D City Database for CityGML, Release 4.1

6.3.2 virtualcitySUITE — The 3D City Platform

The virtualcitySUITE is a modular 3D Spatial Data Infrastructure solution to store, manage, distribute and visualize
3D geo data. Core components are the virtualcityDATABASE and its OGC WES interface for accessing and editing
the data, the virtualcityWAREHOUSE, a data distribution solution running on FME technology that enables users to
export 3D city model content from the virtualcity DATABASE into various industry GIS and CAD formats, and the
web-based authoring tool virtualcityPUBLISHER for creating high-performance 3D web maps. Based on the Open
Source 3D City Database, the virtualcitySUITE allows for building a 3D SDI platform for virtual 3D city models
based on open standards and interfaces.

virtualcityPUBLISHER
3D maps compilation Client
immmmEE. . \ ¢
CityGML FooreSOL £ @ae
data requests
MCICETEN
continuation
virtualcityDATABASE WEFS
J
data distribution
. . external
virtualcitySUITE virtualcityWAREHOUSE WMS / WFS

Fig. 6.1: Components of the virtualcitySUITE.

Our 3D web maps offer enhanced GIS functionality beyond pure 3D visualization including 3D measurements, real-
time shadows, WFS-based thematic and spatial queries, POI integration, data exports through a virtualcity WARE-
HOUSE interface, and integration of external WMS and WFS data sources as well as pointcloud data and oblique
imagery. The 3D web maps are based on the Cesium WebGL virtual globe and therefore can be displayed on modern
web browsers and mobile devices such as tablets and smartphones without the need for additional plugins.

6.4 3DCityDB @ M.O.S.S.

M.O.S.S. Computer Grafik Systeme GmbH is a leading provider of geo topographical data management and process-
ing solutions. Within the M.O.S.S. product suite novaFACTORY, the 3D City Database is used since 2011 as the
primary storage container for 3D and CityGML based data. M.O.S.S. as an active development partner within the
3D City Database implementation group drives on the technological progress of the 3D City Database. Within the
M.O.S.S. customer projects millions of CityGML objects are imported managed and exported by novaFACTORY and
the included 3D City Database. One example is the nationwide database for the german LoD1 building product (LOD-
DE) which is based on the 3D City Database. novaFACTORY is also used as a 3D platform within different projects
concerning renewable energy topics like building heat demand analysis or solar potential assessment.

6.4.1 novaFACTORY at a glance

novaFACTORY is an advanced Spatial Data Management solution for efficient geodata cataloguing, exploitation and
dissemination. With novaFACTORY we are leading the way in the full integration of enterprise-wide geospatial data
sources which the whole organization can have access to and work from, covering all aspects of

360 Chapter 6. Appendix

http://www.moss.de/

3D City Database for CityGML, Release 4.1

Filter & Inhalte

@ Behérden und Instiutionen

* Logistix
@ »Verkehrstclematik

BPDF aresgen
ik

Fig. 6.2: The Berlin 3D City Model consisting of more than 500,000 fully textured buildings is managed based on
our virtualcitySUITE. The Berlin Economic atlas shown above is a 3D web map application that displays the entire
city model and combines the 3D objects with business and POI information, see http://www.businesslocationcenter.
de/wab/maps/main/.

TRz
LR

Heating demand
[KWh/m?.a]

|: ivabd buidings

Fig. 6.3: Example of a 3D building heat demand map for the city of Ludwigsburg created with novaFACTORY 3D
within project SimStadt

6.4. 3DCityDB @ M.O.S.S. 361

http://www.businesslocationcenter.de/wab/maps/main/
http://www.businesslocationcenter.de/wab/maps/main/
http://simstadt.hft-stuttgart.de/

3D City Database for CityGML, Release 4.1

e Data Import

* Quality Assurance

* Data Storage and Management

¢ Data Processing and Enrichment
* Data Dissemination

As applications for geodata have grown, so too has the need to efficiently administer them. Many businesses, whether
government departments or private companies, are faced with the complex task of managing geospatial data. The
challenge is to allow collaboration across the organization in a meaningful way, from a range of sources and formats
located throughout their enterprise.

novaFACTORY is the solution to this challenge. It brings geodata together and eliminates barriers to spatial data
usability by automatically uniting disparate data and combining them into one spatial database. novaFACTORY is
designed for seamlessly integrating large geographical data sets from many different sources, e.g. topographic maps,
digital surface models, aerial photographs or 3D building models.

Within novaFACTORY the module 3D GDI is where the 3D City Database comes into the action.

novaFACTORY 3D Pro novaFACTORY 3D GDI

process- und job controlling & workflow control
[—— 1[] e——

automatic generation
of roof types

f N R | S A S

raw data production database

building outlines
building models

release dissemination

3D City Database
ArcGIS® Server

2D & 3D GIS objects

meta data

disposal

tation

digital surface model

o h ~— — CityGML / KML / VRML /
building footprints
digital terrain model DXF / 3D Shape
mono & stereo
editing
automatic supply of raw data

I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
I
I
I
I
I
[|
: |
I
presen- |
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

Fig. 6.4: novaFACTORY 3D overview and workflow. 3D data management based on 3D City Database

6.4.2 novaFACTORY 3D GDI

The novaFACTORY 3D GDI module is designed for handling and serving 3D city models in CityGML format. It
enables the RDBMS based seamless storage and dissemination of 3D city models as well as setting up web services
using them. The data is kept within the 3D City Database and can be automatically transferred into an ArcGIS®
Geodatabase.

As with all novaFACTORY modules data can be disseminated via an intuitive web interface and via any workstation,
in alternatively formats, e.g. CityGML, KML/COLLADA, VRML, 3D Shape, 3D PDF and 3D DXF. Depending on
which kind of format is chosen different export parameters can be opted for showing specific object data.

362 Chapter 6. Appendix

3D City Database for CityGML, Release 4.1

Additional benefit is gained by automatically enhancing the 3D building data. The novaFACTORY 3D GDI module
offers a fully integrated solar potential analysis during the export, targeted at the area of interest. 3D data can be
visualized directly. Appropriate ArcGIS presentation rules will be generated automatically during the export.

The novaFACTORY 3D GDI module works best in cooperation with the novaFACTORY 3D Pro module for automatic
recognition of building roofs from photogrammetric raw data. This raw data will be supplied automatically and the
3D City Database will be updated automatically when production data are approved.

6.4. 3DCityDB @ M.O.S.S. 363

3D City Database for CityGML, Release 4.1

364 Chapter 6. Appendix

CHAPTER /

References

365

3D City Database for CityGML, Release 4.1

366 Chapter 7. References

CHAPTER 8

Changelog

This appendix provides an overview of the most important changes in version 4.0 of the 3D City Database and version
4.1 of the Importer/Exporter compared to the previous release version 3.3.0.

8.1 3D City Database relational schema

8.1.1 General changes
* New metadata tables ADE, SCHEMA, SCHEMA_REFERENCING and SCHEMA_TO_OBJECTCLASS for
registering CityGML ADEs

e Added OBJECTCLASS_ID column to all feature tables to distinguish objects from CityGML ADEs. Also
extended OBJECTCLASS table by more feature-specific details and inserted new entries for feature properties
such as geometry, generic attributes etc.

¢ Added NOT NULL constraints on each OBJECTCLASS_ID column

* New prefilled metadata table AGGREGATION_INFO that supports the automatic generation of DELETE and
ENVELOPE scripts

» Changed delete rule of one foreign key in link tables to ON DELETE CASCADE to produce better delete scripts

8.2 3D City Database scripts

* Moved interactive prompts from SQL to batch/shell scripts for better setup automation
* Provide batch (Windows) and shell scripts (UNIX, macOS) for both PostgreSQL and Oracle DBMS

* Re-added scripts to create a read-only user (UTIL folder), called GRANT_ACCESS and REVOKE_ACCESS
(removed in v3.x). Also includes a read-write option.

* New MIGRATION scripts to upgrade from a 3DCityDB v2.1.0 or v3.3.2 to v4.0.0.

* Tidier folder and script structure:

367

3D City Database for CityGML, Release 4.1

Removed folders PL_SQL (Oracle) and PL_pgSQL (PostgreSQL) to make CITYDB_PKG a top-level
directory under the SQLScripts folder

Moved OBJECTCLASS_INSTANCES script to SCHEMA/OBJECTCLASS folder
PostgreSQL: New SCHEMAS directory in UTIL folder
Oracle: One instead of two CREATE_DB scripts

Oracle: Moved versioning scripts to its own directory in the UTIL folder

Oracle: Renamed CREATE_DB folder in UTIL directory to HINTS

¢ Oracle: Better treatment if SDO_GEORASTER support is missing

e Oracle: Defining spatial metadata on all geometry columns with new function set_schema_sdo_metadata in
CITYDB_CONSTRAINT package instead of a hard-coded part in SPATIAL_INDEX.sql script

8.3 3D City Database stored procedures

8.3.1 General changes

* New packages: CITYDB_CONSTRAINT and CITYDB_OBJCLASS

¢ Removed parts with dynamic SQL where possible. Required renaming of some function arguments to avoid
conflicts with column names in querys

* PostgreSQL: Added volatility categories for better query planning

8.3.2 UTIL package

» Updated version numbers in citydb_version function

e Moved update_schema_constraints and update_table_constraint procedures into new CITYDB_CONSTRAINT
package and renamed them to set_schema_fkey_delete_rule and set_fkey_delete_rule. Change data type for
on_delete_param to CHAR as only one letter is needed to set a new delete rule: ‘a’ for ON DELETE NO
ACTION, ‘n’for ON DELETE SET NULL (‘n’), ‘c’ for ON DELETE CASCADE or (PostgreSQL-only) ‘r’ for
ON DELETE RESTRICT

* Moved objectclass_id_to_table_name function to new CITYDB_OBJCLASS package.
* Added schema_name parameter to functions db_metadata and db_info
* Removed schema_name parameter from get_seq_values function

¢ Oracle: Removed schema_name parameter from construct_solid function

8.3.3 IDX package

* Oracle: Added schema_name parameter to get_index function

* Oracle: Dropping spatial indexes will not delete spatial metadata anymore

368 Chapter 8. Changelog

3D City Database for CityGML, Release 4.1

8.3.4 SRS package

* Added schema_name parameter to is_db_ref_sys_3d function
* Oracle: Added schema_name parameter to get_dim function

* Oracle: Do not delete spatial metadata when spatial index is not valid

8.3.5 STAT package

* Exclude new metadata tables from database report

8.3.6 DELETE package

¢ Aligned API of Oracle version with PostgreSQL (no more _pre and _post methods)
» Two delete endpoints are provided for each feature class: Delete by single ID value or delete by a set of IDs

e All 1:n references are deleted right away. Replaced all explicit cleanup scripts (except for
cleanup_appearances) with one generic cleanup function

* New prefix del_ instead of delete_

* The DELETE scripts have been generated automatically by the ADE Manager Plugin of the Importer/Exporter.
This process shall be repeated when introducing ADE extensions to the database schema.

8.3.7 DELETE_BY_LINEAGE package

* The package and included stored procedures have been removed

* New function del_delete_cityobjects_by_lineage in DELETE package

8.3.8 ENVELOPE package

» New prefix env_ instead of get_envelope_ (except for get_envelope_cityobjects function)

e The ENVELOPE scripts have been generated automatically by the ADE Manager Plugin of the Im-
porter/Exporter. This process shall be repeated when introducing ADE extensions to the database schema.

8.4 3D City Database Importer/Exporter

The new version 4.1 of the Importer/Exporter contains many bug fixes as well as stability and performance im-
provements. A full list of fixes and changes is available from the GitHub repository at https://github.com/3dcitydb/
importer-exporter.

8.4.1 General changes

* Java 8 is required since version 3.3.0.

* The Importer/Exporter can now connect to both Oracle and PostgreSQL.

8.4. 3D City Database Importer/Exporter 369

https://github.com/3dcitydb/importer-exporter
https://github.com/3dcitydb/importer-exporter

3D City Database for CityGML, Release 4.1

Temporary information required during data imports and exports (e.g., for resolving of XLink references) can
now optionally be stored to a local file-based database instead of using temporary tables in the 3D City Database
instance.

3.1: Importer/Exporter now checks the version of the 3DCityDB before connecting
3.1: Re-Added user dialog to control GMLID_CODESPACE during import
3.1: Added user dialog to calculate the ENVELOPE of city objects in the database

3.3: The location of the main config file (‘project.xml’) has been changed to
%HOMEDRIVE%%HOMEPATH%3dcitydbimporter-exporterconfig (Windows 7 and higher) respectively
$HOME/3dcitydb/importer-exporter/config (UNIX/Linux, Mac OS families). Old config files can still be
loaded manually (note: was ../importer-exporter-3.0/.. in versions 3.0 to 3.2)

4.1: OSM Nominatim is now used as default geocoder for the map window. Google Map API services can still
be used for the map window and for KML/COLLADA exports but require an API key.

4.2: Reworked Plugin API to support non-GUI plugins.

8.4.2 CityGML import

4.2: Fixed broken feature type filter for CityGML imports.

4.2: Added possibility to define a gml:id prefix for the UUIDs that are created during CityGML imports.
4.1: Added support for importing CityGML data from (G)ZIP files.

CityGML import now supports CityGML versions 2.0, 1.0 and 0.4.

A new import log optionally tracks all successfully imported top-level city objects in a separate CSV file. In case
an import process aborts abnormally, this file can be used to understand which city objects have been processed
and stored in the database before termination.

The import process now follows a fail-on-first-error strategy, i.e. the import terminates upon the first error
thrown instead of trying to continue.

Improved import of texture atlases. Each texture atlas is only stored once in the database (new table ‘tex_image’)
even if it is referenced by more than one city object.

Local appearance information is now resolved in main memory to reduce import times instead of using tempo-
rary database tables.

Texture metadata is imported even if texture images are chosen to be not imported
3.1: Changed the way global appearances are imported

3.1: Fixed bug in BRIDGE importer preventing import of bridges with thematic surfaces

8.4.3 CityGML export

4.2: Property projections can now also be defined for abstract feature types.

4.1: Added support for using SQL and XML queries for CityGML exports to be able express more flexible and
complex filter conditions.

4.1: Added support for exporting CityGML content to (G)ZIP files.

Database content can now be exported to CityGML 2.0 or 1.0. When exporting to CityGML 1.0, feature types
only available in CityGML 2.0 such as bridges and tunnels are omitted.

370

Chapter 8. Changelog

3D City Database for CityGML, Release 4.1

* City object group members can now be exported as-reference (using XLink references) instead of as-value to
reduce export times. However, note that filter criteria are not applied in this case, which might result in CityGML
files containing non-resolvable XLink references.

¢ When exporting city objects with textures, the texture image files can now be organized into subfolders. This
reduces the number of files per folder.

8.4.4 KML/COLLADA/gITF export

* Support for gITF version 2.0 in addition to version 1.0. New COLLADA2gITF binaries (version 2.1.3) for
Windows, Linux and MacOS.

 Solved bugs that might prevent exporting LandUse 3D models from functioning correctly.

8.5 Web Feature Service

* Since 3.0: Added a basic Web Feature Service interface for the 3D City Database

* Fixed a SQL Injection vulnerability with version 3.3.0. It is strongly recommended to update to this version.

8.6 3D Web Map Client

* Introduced geolocation-based features such as the first-person view on mobile devices.
* Support for gITF 2.0.
* Support for Cesium 3D Tiles.

8.5. Web Feature Service 371

3D City Database for CityGML, Release 4.1

372 Chapter 8. Changelog

Bibliography

[BaFi2008] Barners, M., Finch, E. L. (2008): COLLADA - Digital Asset Schema Release 1.5.0. The Khronos Group
Inc., Sony Computer Entertainment Inc, April 2008. http://www.khronos.org/files/collada_spec_1_5.pdf
(accessed September 2018)

[BKDS2015] Borrmann, A., Kolbe, T. H., Donaubauer, A., Steuer, H., Jubierre, J. R., Flurl, M. (2015): Multi-scale
geometric-semantic modeling of shield tunnels for GIS and BIM applications. Computer-Aided Civil and
Infrastructure Engineering (Vol. 30, No. 4). Weblink (accessed September 2018): http://dx.doi.org/10.
1111/mice.12090.

[ChYK2015] Chaturvedi, K., Yao, Z., Kolbe, T. H. (2015): Web-based Exploration of and Interaction with Large
and Deeply Structured Semantic 3D City Models using HTML5 and WebGL. In: Proc. of the 35th
Annual Conference of the German Society for Photogrammetry, Remote Sensing and Geoinforma-
tion (DGPF), Weblink (accessed September 2018): http://www.dgpf.de/src/tagung/jt2015/proceedings/
papers/34_DGPF2015_Chaturvedi_et_al.pdf

[CGIT1980] Coffman, E.G. Jr., Garey, M. R., Johnson, D.S., Tarjan, R.E. (1980): Performance bounds for level-
oriented two-dimensional packing algorithms. In: SIAM Journal on Computing 9 (1980), pp. 801-826.

[DBBF2005] Dollner, J., Buchholz, H., Brodersen, F., Glander, T., Jutterschenke, S., Klimetschek, A. (2005): Smart
Buildings — A Concept for Ad-Hoc Creation and Refinement of 3D Building Models. In: Kolbe, T. H.,
Groger, G. (eds.): Proceedings of the 1st International Workshop on Next Generation 3D City Models,
Bonn, Germany, June 2005, EuroSDR Publications.

[DKLS2006] Déllner, J., Kolbe, T. H., Liecke, F., Sgouros, T., Teichmann, K. (2006): The Virtual 3D City Model
of Berlin - Managing, Integrating, and Communicating Complex Urban Information. In: Proceedings of
the 25th Urban Data Management Symposium UDMS 2006 in Aalborg, Denmark, May 15-17. Weblink
(accessed September 2018): http://mediatum.ub.tum.de/doc/1145759/484057.pdf

[FMWD2018] Fiutak, G.; Marx, C.; Willkomm, P.; Donaubauer, A.; Kolbe, T. H. (2018): Automatisierte Gener-
ierung eines digitalen Landschaftsmodells in 3D. PFGK18 - Photogrammetrie - Fernerkundung - Geoin-
formatik - Kartographie, 37. Jahrestagung in Miinchen 2018 (Publikationen der Deutschen Gesellschaft
fiir Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V. 27), Deutsche Gesellschaft fiir
Photogrammetrie, Fernerkundung und Geoinformation e.V., 888-902.

[FVFH1995] Foley, J., van Dam, A,. Feiner, S., Hughes, J. (1995): Computer Graphics: Principles and Practice.
Addison Wesley, 2nd Ed.

[Khro2018] gITF - Efficient, Interoperable Transmission of 3D Scenes and Models, Khronos, Weblink (accessed
September 2018): https://www.khronos.org/gltf

373

http://www.khronos.org/files/collada_spec_1_5.pdf
http://dx.doi.org/10.1111/mice.12090
http://dx.doi.org/10.1111/mice.12090
http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi_et_al.pdf
http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi_et_al.pdf
http://mediatum.ub.tum.de/doc/1145759/484057.pdf
https://www.khronos.org/gltf

3D City Database for CityGML, Release 4.1

[GKSS2005] Groger, G., Kolbe, T. H., Schmittwilken, J., Stroh, V., Plimer, L. (2005): Integrating versions, history
and levels-of-detail within a 3D geodatabase. In: Kolbe, T. H., Groger, G. (eds.): Proceedings of the
1st International Workshop on Next Generation 3D City Models, Bonn, Germany, June 2005, EuroSDR
Publications. Weblink (accessed September 2018): https://mediatum.ub.tum.de/doc/1453849/1453849.
pdf

[GKCN2008] Groger G., Kolbe, T. H., Czerwinski, A., Nagel C. (2008): OpenGIS® City Geography Markup Lan-
guage (CityGML) Encoding Standard, Version 1.0.0. Open Geospatial Consortium, Doc. No. 08-007r1,
August 20th. http://portal.opengeospatial.org/files/?artifact_id=28802

[GKNH2012] Groger G., Kolbe, T. H., Nagel C., Hifele, K. H. (2012): OpenGIS® City Geography Markup Language
(CityGML) Encoding Standard, Version 2.0.0. Open Geospatial Consortium, Doc. No. 12-019, http://
portal.opengeospatial.org/files/?artifact_id=28802

[HeNK2012] Herreruela, J., Nagel, C., Kolbe, T. H. (2012): Value-added Services for 3D City Models using Cloud
Computing. In: Lowner, M.-O., Hillen, F., Wohlfahrt, R. (eds.): Geoinformatik 2012 “Mobilitat und
Umwelt”, Proc. of the Conference Geoinformatik 2012, 28.-30. 3. 2012 in Braunschweig. Weblink: http:
//mediatum.ub.tum.de/doc/1145739/42082.pdf (accessed September 2018)

[Herr2001] Herring, J. (2001): The OpenGIS Abstract Specification, Topic 1: Feature Geometry (ISO 19107 Spatial
Schema). OGC Document Number 01-101

[KaKo2014] Kaden, R., Kolbe, T. H. (2014): Simulation-Based Total Energy Demand Estimation of Buildings using
Semantic 3D City Models. International Journal of 3-D Information Modeling, 3(2), 35-53, April-June
2014. Weblink (accessed September 2018): http://dx.doi.org/10.4018/ij3dim.2014040103

[KoGr2003] Kolbe, T. H., Groger, G. (2003): Towards unified 3D city models. In Schiewe, J., Hahn, M., Madden,
M., Sester, M. (eds.): Proceedings of the ISPRS Comm. IV Joint Workshop on Challenges in Geospatial
Analysis, Integration and Visualization IT in Stuttgart. Weblink: http://mediatum.ub.tum.de/doc/1145769/
703861.pdf (accessed Sept. 2018)

[Kolb2009] Kolbe, T. H. (2009): Representing and Exchanging 3D City Models with CityGML. In: Lee, J., Zla-
tanova, S. (eds.): Proceedings of the 3rd International Workshop on 3D Geo-Information 2008 in Seoul,
South Korea. Lecture Notes in Geoinformation & Cartography, Springer Verlag, 2009. Weblink (accessed
September 2018): http://mediatum.ub.tum.de/doc/1145752/947446.pdf

[KKNS2009] Kolbe, T. H.; Konig, G.; Nagel, C.; Stadler, A. (2009): 3D-Geo-Database for CityGML, Documentation
Version 2.0.1, Institute for Geodesy and Geoinformation Science, TU Berlin. Weblink (accessed Septem-
ber 2018): http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-Documentation-v2_0.
pdf

[Kund2013] Kunde, F. (2013): CityGML in PostGIS: portability, usage and performance analysis using the example
of the 3D City Database of Berlin. (in german only) Master Thesis, University of Potsdam, Germany,
URN: urn:nbn:de:kobv:517-opus-63656 (accessed September 2018).

[LoMV1999] Lodi A., Martello S., Vigo D. (1999): The Touching Perimeter Algorithm: Heuristic and Metaheuristic
Approaches for a Class of Two-Dimensional Bin Packing Problems. In: INFORMS J on Computing: pp.
345-357.

[LoMM2002] Lodi A., Martello S., Monaci M., (2002): Two-dimensional packing problems: A survey. In: European
Journal of Operational Research, 141, issue 2, pp. 241-252.

[Murr2010] Murray, C. et al. (2010): Oracle ® Spatial Developer’s Guide 11g Release 2 (11.2), E11830-06, March
2010. Weblink (accessed September 2018): http://docs.oracle.com/cd/E18283_01/appdev.112/e11830.
pdf

[NaSt2008] Nagel, C., Stadler, A. (2008): Die Oracle-Schnittstelle des Berliner 3D-Stadtmodells. In: Clemen, C.
(Ed.): Entwicklerforum Geoinformationstechnik 2008, Shaker Verlag, Aachen, S. 197-221.

[PGKS2005] Pliimer, L., Groger, G., Kolbe, T. H., Schmittwilken, J., Stroh, V., Poth, A., Taddeo, U. (2005): 3D-
Geodatenbank Berlin, Dokumentation V1.0 Institut fiir Kartographie und Geoinformation der Univer-

374 Bibliography

https://mediatum.ub.tum.de/doc/1453849/1453849.pdf
https://mediatum.ub.tum.de/doc/1453849/1453849.pdf
http://portal.opengeospatial.org/files/?artifact_id=28802
http://portal.opengeospatial.org/files/?artifact_id=28802
http://portal.opengeospatial.org/files/?artifact_id=28802
http://mediatum.ub.tum.de/doc/1145739/42082.pdf
http://mediatum.ub.tum.de/doc/1145739/42082.pdf
http://dx.doi.org/10.4018/ij3dim.2014040103
http://mediatum.ub.tum.de/doc/1145769/703861.pdf
http://mediatum.ub.tum.de/doc/1145769/703861.pdf
http://mediatum.ub.tum.de/doc/1145752/947446.pdf
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-Documentation-v2_0.pdf
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-Documentation-v2_0.pdf
urn:nbn:de:kobv:517-opus-63656
http://docs.oracle.com/cd/E18283_01/appdev.112/e11830.pdf
http://docs.oracle.com/cd/E18283_01/appdev.112/e11830.pdf

3D City Database for CityGML, Release 4.1

sitdt Bonn (IKG), lat/lon GmbH. Weblink https://www.businesslocationcenter.de/imperia/md/content/3d/
dokumentation_3d_geo_db_berlin.pdf (accessed September 2018).

[SNKK2009] Stadler, A., Nagel, C., Konig, G., Kolbe, T. H. (2009): Making interoperability persistent: A 3D geo
database based on CityGML. In: Lee, J., Zlatanova, S. (eds.): Proceedings of the 3rd International Work-
shop on 3D Geo-Information 2008 in Seoul, South Korea. Lecture Notes in Geoinformation & Car-
tography, Springer Verlag, 2009. Weblink (accessed September 2018): http://mediatum.ub.tum.de/doc/
1145748/781842.pdf

[Whit2009] Whiteside, A. (2009): Definition identifier URNs in OGC namespace, Version 1.3. Open Geospatial
Consortium, OGC® Best Practices, Doc. No. 07-092r3, January 15th. http://portal.opengeospatial.org/
files/?artifact_id=30575

[Wils2008] Wilson, T. (2008): OGC® KML, OGC® Standard Version 2.2.0. Open Geospatial Consortium, Doc. No.
07-147r2, April 14th. http://portal.opengeospatial.org/files/?artifact_id=27810

[Weis2015] Weisstein, E. W. (2015): Affine Transformation, Wolfram MathWorld, Weblink (accessed September
2018): http://mathworld.wolfram.com/AffineTransformation.html

[YSKK2012] Yao, Z., Sindram, M., Kaden, R., Kolbe, T. H. (2014): Cloud-basierter 3D-Webclient zur kollaborativen
Planung energetischer Mafinahmen am Beispiel von Berlin und London. In: Kolbe, Bill, Donaubauer
(eds.): Geoinformationssysteme 2014 — Beitrdge zur 1. Miinchner GI-Runde, 24.-25. 2. 2014, Wichmann
Verlag, Berlin. Weblink (accessed September 2018): http://mediatum.ub.tum.de/doc/1276243/359202.
pdf

[YaCK2016] Yao, Z., Chaturvedi, K., Kolbe, T. H. (2016): Browserbasierte Visualisierung grofier 3D-Stadtmodelle
durch Erweiterung des Cesium Web Globe. In: Kolbe, T. H., Bill, R., Donaubauer, A. (eds.): Geoinfor-
mationssysteme 2016 — Beitrige zur 3. Miinchner GI-Runde, 24.-25. 2. 2016, Wichmann Verlag, Berlin.
Weblink (accessed September 2018): http://mediatum.ub.tum.de/doc/1296408/547142.pdf

[YaKo02017] Yao, Z., Kolbe, T. H. (2017): Dynamically Extending Spatial Databases to support CityGML Ap-
plication Domain Extensions using Graph Transformations. In: Kersten, T.P. (ed.): Beitrag zur 37.
Wissenschaftlich-Technische Jahrestagung der DGPF. Deutsche Gesellschaft fiir Photogrammetrie, Fern-
erkundung und Geoinformation e.V. Weblink (accessed September 2018): http://mediatum.ub.tum.de/
doc/1425154/602735.pdf

[YNKH2018] Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi, T., Kolbe, T.
H. (2018): 3DCityDB - a 3D geodatabase solution for the management, analysis, and visualization of
semantic 3D city models based on CityGML. Open Geospatial Data, Software and Standards 3 (5), 2018,
1-26. Weblink (accessed September 2018): http://dx.doi.org/10.1186/s40965-018-0046-7

Bibliography 375

https://www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo_db_berlin.pdf
https://www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo_db_berlin.pdf
http://mediatum.ub.tum.de/doc/1145748/781842.pdf
http://mediatum.ub.tum.de/doc/1145748/781842.pdf
http://portal.opengeospatial.org/files/?artifact_id=30575
http://portal.opengeospatial.org/files/?artifact_id=30575
http://portal.opengeospatial.org/files/?artifact_id=27810
http://mathworld.wolfram.com/AffineTransformation.html
http://mediatum.ub.tum.de/doc/1276243/359202.pdf
http://mediatum.ub.tum.de/doc/1276243/359202.pdf
http://mediatum.ub.tum.de/doc/1296408/547142.pdf
http://mediatum.ub.tum.de/doc/1425154/602735.pdf
http://mediatum.ub.tum.de/doc/1425154/602735.pdf
http://dx.doi.org/10.1186/s40965-018-0046-7

	First steps
	System requirements
	3D City Database
	Importer/Exporter Tool

	Installation of the Importer/Exporter
	Setting up the database schema
	Shell Scripts
	SQL Scripts
	Installation steps on Oracle Databases
	Installation steps on PostgreSQL

	Migration from previous releases
	V2 to V4 Migration on Oracle
	V2 to V4 Migration on PostgreSQL
	V3 to V4 Migration
	Upgrade between minor releases

	3DCityDB Docker Images
	Getting started
	Further images

	3D City Database
	Introduction
	Main features of 3DCityDB
	CityGML 2.0.0 and 1.0.0 compliant database
	Support for CityGML Application Domain Extensions (ADEs)
	Importing and exporting CityGML data
	Export to KML, COLLADA and glTF
	Spreadsheet export
	Interactive 3D web visualization
	Web Feature Service (WFS) 2.0
	Docker support
	Open Source and Platform Independence
	Features inherited from CityGML

	System and design decisions
	Development history
	Version 1 - 2003 - 2007
	Version 2 - 2006 - 2014
	Version 3 - 2013 - 2018
	Version 4 - since 2015
	Acknowledgements
	List of changes between software versions
	Notable changes between 4.0 and 3.3

	Data Modelling and Database Design
	Simplification compared to CityGML 2.0.0
	Multiplicities of attributes
	Cardinalities and types of relationships
	Simplified treatment of recursions
	Data type adaptation
	Project specific classes and class attributes
	Simplified design of GML geometry classes

	UML class diagram
	Geometric-topological Model
	Implicit Geometry
	Appearance Model
	Thematic model
	Core Model
	Building model
	Bridge Model
	CityFurniture Model
	Generic Objects and Attributes
	LandUse Model
	Digital Terrain Model
	Transportation Model
	Tunnel Model
	Vegetation Model
	WaterBodies Model

	Relational database schema
	Mapping rules, schema conventions
	Mapping of classes onto tables
	Explicit declaration of class affiliation

	Conceptual database structure
	Database schema
	Metadata Model
	Core Model
	Tables for geometry representation
	Appearance Model
	Building Model
	Bridge Model
	CityFurniture Model
	Generic Objects and Attributes
	LandUse Model
	Digital Terrain Model
	Transportation Model
	Tunnel Model
	Vegetation Model
	WaterBody Model
	Sequences

	Definition of the CRS for a 3D City Database instance
	Working with multiple database schemas
	Create and address database schemas
	Read and write access to a schema
	Schema support in stored procedures

	Stored procedures and additional features
	User-defined data types
	CITYDB_UTIL
	CITYDB_CONSTRAINT
	CITYDB_IDX
	CITYDB_SRS
	CITYDB_STAT
	CITYDB_OBJCLASS
	CITYDB_DELETE
	CITYDB_ENVELOPE

	Importer-Exporter
	Interfaces
	Database connections and operations
	Managing and establishing database connections
	Executing database operations
	Generating a database report
	Calculating/updating the bounding box
	Managing indexes
	Managing the spatial reference system of the database
	Displaying supported CityGML ADEs

	Importing CityGML files
	Exporting to CityGML
	SQL queries
	XML query expressions
	<typeNames> parameter
	<propertyNames> projection clause
	<filter> selection clause
	<count> parameter
	<lods> parameter
	<appearance> parameter
	<tiling> parameter
	targetSrid attribute
	Address information
	3DCityDB metadata
	Using XML queries in batch processes

	Exporting to KML/COLLADA/glTF
	Support of GenericCityObject having any geometry types
	Loading exported models in Google Earth and Cesium Virtual Globe

	Preferences
	CityGML import preferences
	Continuation
	gml:id handling
	Address
	Appearance
	Geometry
	Indexes
	XML validation
	XSL Transformation
	Import log
	Resources

	CityGML export preferences
	CityGML version
	Tiling options
	CityObjectGroup
	Address
	Appearance
	XLinks
	XSL Transformation
	Resources

	KML/COLLADA/glTF export preferences
	General Preferences
	Rendering Preferences
	Information Balloon Preferences
	Altitude/Terrain Preferences
	General setting recommendations

	Management of user-defined coordinate reference systems
	General preferences
	Cache
	Import and export path
	Network proxies
	API Keys
	Logging
	Language selection

	Map window for bounding box selections
	Using the command line interface (CLI)
	Importer/Exporter plugins
	Introduction to the plugin architecture
	Spreadsheet Generator Plugin (SPSHG)
	Definition
	Plugin installation
	User Interface
	Output

	ADE Manager Plugin
	Definition
	Plugin installation
	User Interface
	Workflow of extending the Import/Export Tool

	Web Feature Service
	System requirements
	Installation
	Configuring the Web Feature Service
	Database settings
	Capabilities settings
	Feature type settings
	Operations settings
	Postprocessing settings
	Server settings
	Cache settings
	Constraints settings
	Logging settings

	Functionality
	Basic functionality
	WFS operations
	Service URL
	Service bindings
	CityGML feature types
	Exception reports

	GetCapabilities operation
	DescribeFeatureType operation
	ListStoredQueries operation
	DescribeStoredQuery operation
	GetFeature operation

	Web-based WFS client

	3DCityDB-Web-Map-Client
	System requirements
	Using the 3D Web Client from the 3DCityDB homepage

	Installation and configuration
	Feature overview
	Handling KML/glTF models with online spreadsheet
	Handling Web Map Service data
	Handling Digital Terrain Models
	Interaction with 3D objects
	Mobile Support Extension
	A more lightweight graphical user interface
	Geolocation-based features

	Appendix
	Contributors
	Active participants in development
	Participants in earlier developments

	3DCityDB @ TU München
	Interactive Cloud-based 3D Webclient
	Research Projects in which 3DCityDB is being used
	Current and future work on 3DCityDB

	3DCityDB @ virtualcitySYSTEMS
	virtualcityDATABASE
	virtualcitySUITE – The 3D City Platform

	3DCityDB @ M.O.S.S.
	novaFACTORY at a glance
	novaFACTORY 3D GDI

	References
	Changelog
	3D City Database relational schema
	General changes

	3D City Database scripts
	3D City Database stored procedures
	General changes
	UTIL package
	IDX package
	SRS package
	STAT package
	DELETE package
	DELETE_BY_LINEAGE package
	ENVELOPE package

	3D City Database Importer/Exporter
	General changes
	CityGML import
	CityGML export
	KML/COLLADA/glTF export

	Web Feature Service
	3D Web Map Client

	Bibliography

